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Partial Information (Pl) Decomposition

Consider three random variables (RVs) X;, X5 and Y taking val-
ues in finite alphabets A7, A, and ) resp. The total mutual
information that a pair of predictor RVs (X1,X;) convey about a
target RV Y can have aspects of

e redundant information — conveyed identically by both X; and
Xy, denoted I({X1,X:};Y),

e unique information — conveyed exclusively by either X; or X,
denoted resp., UI({X1};Y) and UI({X,};Y),

e synergistic information — conveyed jointly by X; and X5 that is
not available from either alone, denoted SI({ X1 X>};Y).

The equations governing such a partial information (Pl) decom-

position are:
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Common Information

Suppose X = (X',Q) and Y = (Y',Q) where X", Y' Q are independent. Intuitively, the common
RV of X and Y (denoted X A Y) is @ and a natural measure of common information (Cl) of X
and Y is H(Q). Can extend this to arbitrary (X,Y) in a couple of ways [8], see Fig. 2(a):

o |Gacs-Korner| Find the “largest” RV @ that is determined by X alone as well as by Y alone
(w.p. 1); exploit the combinatorial structure of the distribution pxy.

Cex(X;Y) = max H(Q) = max [(XY;Q), |9 < |X||V]+ 2

PQ|XY: PQ|XY:
H(QIX)=H(Q|Y)=0 Q—X-Y, Q-Y—X

o [Wyner| Find the “smallest” RV @ such that conditioned on @ there is no residual mutual
information.

min 1(XY:Q), |Q| < [X]|¥] +2

PQ| Xy -
X—Q-Y

o Cex(X;Y) < I(X;Y) w(X;Y) with equality iff there exists a pmf pg|xy such that the

< C
(XX Y) = In({X1, X1 Y)+SI({ XX Y) Markov chains X — Q — Y, Q — X — Y, Q — Y — X hold [8].

N——— —

redundant synergistic
+ Ul({Xl}, Y) + Ul({XQ}, Y)
unique (X1 wrt X3) unique (X wrt X)

[(X:Y) = h({X, %61 Y) + UI({X)Y),i=12 (1)

Common Information-based Measures of [+

Three candidate measures to assess how well the redundancy that X; and X5 share about Y can
be captured by a RV:

ISR XL, X1 Y) max I(Q;Y) = I(X1 A X Y) (2)

PQ|X1 Xy Y-
H(Q|X1)=H(Q|X2)=0

omin - 1(Q:Y) (3)
X—Q-Y.i=12
h({X.Xe}Y) = max
Q-Xi— Y. i=12

Y ({X1,%}:Y)

(a) XOR (b) AND
Figure 1. Pl-diagrams showing the decomposition of /(X1X5;Y’) for some
canonical examples. {1,2} denotes the redundant information /I~({X1,X>2};Y);
{1} and {2} denote, resp. UI({X1};Y) and UI({X,};Y); {12} denotes
SI({X1X2};Y). X1 and X; are binary, independent and uniformly distributed.
(a) Y = XOR(X1,Xz) and the pmf px,x,y is such that P(000) = P(011) = P(101)
= p(110) = %. The joint RV X1.X; fully specifies Y, i.e., [(X1X5;Y) = 1 whereas
the singletons X; and X; specify nothing, i.e., I(X;;Y) =0, i = 1,2. XOR is an
instance of a purely synergistic mechanism.
(b) Y = AND(X1,X3) and px,x,v is such that P(000) = P(010) = P(100) = P(111)
— %. Note X; L X5; however if either X; = 0 or X5 = 0, then both X; and X;
can exclude the possibility of Y = 1 with probability of agreement one;
In({X1,X2};Y) > 0 [2]-[6]. There is no unique information since the marginal
distributions of the pairs (X1,Y) and (X3,Y) are identical and X} = X, [4].

(Q;Y) (4)

where |Q| < ||| ]| + 2.

o lﬂGK: maximum mutual information /(Q : Y) that some RV @ conveys about Y, subject to @
being a function of each of the X's, i = 1,2; [°X violates (LN) since the supermodularity law
does not hold for the Gacs-Korner Cl in general [7].

e I'V: monotonically nondecreasing in the number of X;'s, i.e., [ violates (M).

e In: if Q specifies the optimal redundant RV, then conditioning on any predictor X;, i = 1,2,
should remove all the redundant information about Y [7]; I violates (LN):
olf Xy L X5, then In({X1,X2};Y) = 0; see Fig. 2(b).
olt Xy — Y — X5, then /m({Xl,XQ};Y) < I(Xl;XQ). The derived Pl function 5/({X1X2},Y) < 0;
see Fig. 2(c).
o Let )/ — Xl X XQ and Y = X1X2. Then /m({Xl,XQ};Y) — CGK(Xl;XQ) S /(Xl;XQ).
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Figure 2: For finite RVs, there is a one-to-one correspondence between Shannon's information measures (/-measure)
and a signed measure 11* over sets. (a) The generic /-diagram for RVs X,Y, and Q. Given a RV X, we use X to also
label the corresponding set in the /-diagram. (b) Denote the /-Measure of RVs (Q,X1,X5,Y) by *. The atoms on
which 1* vanishes when the Markov chains @ — X; — Y, i = 1,2 hold and X; L X, are marked by an asterisk;
' (QNY)=0. (c) The atoms on which y* vanishes when the Markov chains @ — X; — Y, i=12and X; — Y — X,
hold are marked by an asterisk; *( X1 N XoNY) = p* (X1 N Xy) > 0and " (QNY) < u*(Xi N X;y). Note: The

[-diagrams in (b) and (c) are valid diagrams since the sets Q,X1,X5,Y intersect each other generically and the region
representing the set () splits each atom into two smaller ones.

The problem:

e Define a measure of redundant information, /4 that yields a

nonnegative decomposition of /(X1X5;Y) per (1). [(Y;01X)

e Explore the relationship between redundant information and
the more familiar notions of common information due to Gacs-

Korner and Wyner [8].
Earlier work: Pl lattice [1]; Information-geometric approaches [(X;10)

6]; (a)

2],[3]; Operational interpretation of unique information [4]-|
Common information-based measures [7].

Desirable properties of /-

(S) Weak symmetry: In({X1,X2};Y) is invariant under reordering
of the X;'s.
() Self-redundancy: IL({Xi};Y) = 1(X;Y).
(M) Monotonicity: Ih({X1,X2};Y) < In({X1};Y) with equality if
X1 C Xo.
(LN) Local Nonnegativity: For a given measure I, the derived
partial information functions U/ and S/ are nonnegative.

e Conclusion: For independent predictor RVs when any nonvanishing redundancy can be attributed
solely to a mechanistic dependence between the target and the predictors, common information-
based measures of redundant information cannot induce a nonnegative Pl decomposition.
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