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Introduction
• Consider the class of nonparametric mixture models

fMix(x;Q) =

∫ b

a
f (x; θ)dQ, x ∈ S, (1)

where for each θ ∈ [a, b], the component distribution f (x; θ) is in the exponential family with
the sample space S, and the mixing distribution Q(θ) is a probability measure over a known,
compact set [a, b].

• Huang (2015) proposed the generalized method of moments (GMM) for mixture models. By
choosing generalized moment conditions, the GMM estimator could be robust to the outliers
at the cost of losing efficiency.

• Our main objective is to investigate the robustness and efficiency in the GMM, when two dif-
ferent classes of generalized moment conditions are used.

The GMM for Mixture Models
• Assume that, for each θ ∈ [a, b], there exists a strictly positive function of x ∈ S , say g(x),

such that f (x; θ)g−1(x) ∈ L2(S, ν0), where dν0 = dx. Let {ψj(x)}∞j=1 be the eigenfunctions
associated with the eigenvalues λ1 > λ2 > · · · > 0, of the positive definite integral operator

(Ah)(x) =

∫
S
h(x′)K(x, x′)dx′, (2)

where

K(x, x′) =
∫ b

a

f (x; θ)

g(x)

f (x′; θ)
g(x′)

dθ. (3)

• Under regularity conditions, we have the expansion

f (x; θ) =

∞∑
j=1

uj(θ)ψj(x)g(x), (4)

where for each j,

uj(θ) =

∫
S
ψj(x)f (x; θ)g

−1(x)dx. (5)

• Assuming that the order of the integral and the infinite sum is exchangeable, we have

fMix(x;Q) =

∞∑
j=1

mjψj(x)g(x), (6)

where for each j,

mj(Q) =

∫ b

a
uj(θ)dQ = EX

[
ψj(x)g

−1(x)
]
. (7)

• It follows a truncation approximation of fMix(x;Q)

fT(x;m(J)) =

J∑
j=1

mjψj(x)g(x), (8)

wherem(J) ∈ RJ is the vector of the generalized moments induced by {uj(θ)}Jj=1.

Definition 1 (GMM for mixture models).
Given a random sample X1, . . . , XN from fMix(x;Q

∗), the GMM estimator ofm(J) ∈ RJ is

m̂(J) =
1

N

N∑
n=1

φ(J)(Xn), (9)

where J is a fixed number and

φ(J)(x) = (ψ1(x)g
−1(x), . . . , ψJ(x)g

−1(x))T ∈ RJ . (10)

The GMM estimator for fMix(x;Q) is

fT(x; m̂(J)) = g(x)
1

N

N∑
n=1

φT
(J)(Xn)ψ(J)(x). (11)

• If J diverges with the sample size N , the GMM estimator fT(x;m(J)) point-wisely converges
to fMix(x;Q

∗) in probability.

• When the sample size N is finite, the number J can be chosen by balancing the bias and
variance of fT(x; m̂(J)).

Conclusions
• The GMM estimators fT(x; m̂(J)) can

have different properties, when differ-
ent g(x) are used.

• When g0 = 1, the resulting GMM esti-
mator is robust to the outliers in data.

• When g0 = f
1/2
0 (x), the GMM estima-

tor for fMix(x;Q) is more efficient.

• In either of the considered cases, the
bias of the GMM estimator is small
and decays with the increase of J .

Forthcoming Research
In this poster, we only considered two possi-
ble choices of g(x). More numerical studies
are needed for other choices of g(x). The-
oretical results are also needed to provide a
guideline in selecting g(x).
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Example of the Mixture of Poisson Distributions
• Consider the mixture of Poisson distributions, Pois(x; θ), θ ∈ [a, b], where a = 0.1 and b = 10.

• Compare the performances of the two classes of generalized moment conditions:

1. g(x) = 1;

2. g(x) = f
1/2
0 (x), where f0(x) = (b− a)−1

∫ b
a f (x; θ)dθ.

Robustness to the outliers
Figure 1 shows the functions ψj(x)g−1(x), j = 1, 2, 3, 4, from the two classes of generalized
moment conditions.

• When g(x) = 1, the functions ψj(x)g−1(x) are bounded. Thus, the robustness to the outliers
is expected.

• When g(x) = f
1/2
0 (x), the functions ψj(x)g−1(x) diverges as x goes to infinity. Thus, the

GMM estimator m̂(J) is not robust to the outliers.

Figure 1: The functions ψj(x)g−1(x), j = 1, 2, 3, 4, when (1) g(x) = 1 and (2) g(x) = f
1/2
0 (x).

Bias from the truncation approximation
Figure 2 presents the approximation errors f (x; θ)− fT(x;u(J)(θ)) over S × [a, b], when J = 5.

• In both cases, fT(x;u(J)(θ)) appropriately approximate f (x; θ) in pointwise.

• In the case g(x) = f
1/2
0 (x), the approximation fT(x;u(J)(θ)) has smaller bias, when x > 10.

Figure 2: The approximation errors of fT(x;u(J)(θ)), J = 5, over S × [a, b], when (1) g(x) = 1 and (2) g(x) = f
1/2
0 (x).

Variance of fT(x; m̂(J))

Figure 3 shows the standard deviation of fT(x; m̂(J)) when the true mixing distribution is

• Q1 = Unif([2, 8]);

• Q2 = 0.5δ(θ = 3) + 0.5δ(θ = 5);

• Q3 = 0.5δ(θ = 8.95) + 0.5δ(θ = 9.05);

• Q4 = 0.99δ(θ = 3) + 0.01δ(θ = 5).

When g(x) = f
1/2
0 (x), the GMM estimator fT(x; m̂(J)) has smaller variances over S.

Figure 3: The variance of fT(x; m̂(J)), J = 5, when the random sample is from fMix(x;Qi), i = 1, 2, 3, 4.


