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An inferential principle for minimization

A sequence of random elements Xn with values in a measurable space
(T , T ) satisfies a Large Deviation Principle with rate Φ whenever, for all
measurable set Ω ⊂ T it holds

−Φ (int (Ω)) ≤ lim inf
n→∞

εn log Pr (Xn ∈ Ω)

≤ lim sup
n→∞

εn log Pr (Xn ∈ Ω) ≤ −Φ (cl (Ω))

for some positive sequence εn where int (Ω) (resp. cl (Ω)) denotes the
interior (resp. the closure) of Ω in T and Φ(Ω) := inf {Φ(t); t ∈ Ω} .
The σ−field T is the Borel one defined by a given basis on T . For subsets
Ω in T such that

Φ (int (Ω)) = Φ (cl (Ω)) (1)

it follows by inclusion that

− lim
n→∞

εn log Pr (Xn ∈ Ω) = Φ (int (Ω)) = Φ (cl (Ω)) = inf
t∈Ω

Φ(t) = Φ(Ω).

(2)
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Assume that we are given such a family of random elements X1,X2, ..
together with a set Ω ⊂ T which satisfies (1). Suppose that we are
interested in estimating Φ (Ω). Then, whenever we are able to simulate a
family of replicates Xn,1, ..,Xn,K such that Pr (Xn ∈ Ω) can be
approximated by the frequency of those Xn,i’s in Ω, say

fn,K (Ω) :=
1
K
card (i : Xn,i ∈ Ω) (3)

a natural estimator of Φ (Ω) writes

Φn,K (Ω) := −εn log fn,K (Ω) .

We have substituted the approximation of the variational problem
Φ (Ω) := inf (Φ (ω) ,ω ∈ Ω) by a much simpler one, namely a Monte
Carlo one, defined by (3).
No need to identify the set of points ω in Ω which minimize Φ.
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This program can be realized whenever we can identify the sequence of
random elements Xi’s for which, given the criterion Φ and the set Ω, the
limit statement (2) holds.
Here the Xi’s are empirical measures of some kind, and Φ(Ω) writes
φ (Ω,P) which is the infimum of a divergence between some reference
probability measure P and a class of probability measures Ω.
Standpoint:

φ (Ω,P) is a LDP rate for specific Xi’s to be built.
Applications: choice of models, estimation of the minimizers (dichotomy,
etc)
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Divergences

Let (X ,B) be a measurable Polish space and P be a given reference
probability measure (p.m.) on (X ,B). DenoteM1 the set of all p.m.’s on
(X ,B) . Let ϕ be a proper closed convex function from ]−∞,+∞[ to
[0,+∞] with ϕ(1) = 0 and such that its domain
domϕ := {x ∈ R such that ϕ(x) < ∞} is a finite or infinite interval . For
any measure Q inM1, the φ-divergence between Q and P is defined by

φ(Q,P) :=
∫
X

ϕ

(
dQ
dP
(x)
)
dP(x).

if Q << P. When Q is not a.c. w.r.t. P, set φ(Q,P) = +∞. The
φ-divergences between p.m.’s were introduced in Csiszar (1963) as
“f -divergences”with some different definition.
For all p.m. P, the mappings Q ∈ M 7→ φ(Q,P) are convex and take
nonnegative values. When Q = P then φ(Q,P) = 0. Furthermore, if the
function x 7→ ϕ(x) is strictly convex on a neighborhood of x = 1, then

φ(Q,P) = 0 if and only if Q = P.

Michel Broniatowski (Institute) Monte Carlo and divergences June 13, 2016 6 / 36



Cressie-Read divergences

When defined onM1, divergences associated with
ϕ1(x) = x log x − x + 1 (KL), ϕ0(x) = − log x + x − 1 (KLm-likelihood),
ϕ2(x) =

1
2 (x − 1)

2 (Spearman Chi-square), ϕ−1(x) =
1
2 (x − 1)

2/x
(modified Chi-square, Neyman), ϕ1/2(x) = 2(

√
x − 1)2 (Hellinger)

The class of Cressie and Read power divergences

x ∈]0,+∞[ 7→ ϕγ(x) :=
xγ − γx + γ− 1

γ(γ− 1) (4)
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Extensions

The power divergences functions Q ∈ M1 7→ φγ(Q,P) can be defined on
the whole vector space of signed finite measuresM via the extension of
the definition of the convex functions ϕγ : For all γ ∈ R such that the
function x 7→ ϕγ(x) is not defined on ]−∞, 0[ or defined but not convex
on whole R, we extend its definition as follows

x ∈]−∞,+∞[ 7→
{

ϕγ(x) if x ∈ [0,+∞[,
+∞ if x ∈]−∞, 0[.

(5)

Note that for the χ2-divergence for instance, ϕ2(x) := 1
2 (x − 1)2 is

defined and convex on whole R.
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The conjugate (or Legendre transform) of ϕ will be denoted ϕ∗,

t ∈ R 7→ ϕ∗(t) := sup
x∈R

{tx − ϕ(x)} ,

Property: ϕ is essentially smooth iff ϕ∗ is strictly convex; then,

ϕ∗(t) = tϕ′−1(t)− ϕ
(

ϕ′
−1
(t)
)

and ϕ∗′(t) = ϕ′
−1
(t).

In the present setting this holds.
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The bootstrapped empirical measure

Let Y ,Y1,Y2, ...denote a sequence of positive i.i.d. random variables . We
assume that Y satisfies the so-called Cramer condition

N :=
{
t ∈ R such that ΛY (t) := log EetY < ∞

}
contains a neigborhood of 0 with non void interior.
Consider the weights W n

i , 1 ≤ i ≤ n

W n
i :=

Yi
∑n
i=1 Yi

which define a vector of exchangeable variables (W n
1 , ..,W

n
n ) for all n ≥ 1.
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The data xn1 , .., x
n
n : We assume that

lim
n→∞

1
n

n

∑
i=1

δx ni = P

a.s. and we define the bootstrapped empirical measure of (xn1 , .., x
n
n ) by

PWn :=
1
n

n

∑
i=1
W n
i δx ni .
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A Sanov type result for the weighted Bootstrap empirical
measure

Define the Legendre transform of ΛY , say Λ∗ defined on Im Λ′ by

Λ∗(x) := sup
t
tx −ΛY (t).

Theorem

Under the above hypotheses and notation the sequence PWn obeys a LDP
on the space of all finite signed measures on X equipped with the weak
convergence topology with rate function

φ (Q,P) := infm>0
∫

Λ∗
(
m dQ
dP (x)

)
dP(x) if Q << P

+∞ otherwise
(6)

This Theorem is a variation on Corollary 3.3 in Trashorras and
Wintenberger (2014).
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Estimation of the minimum of the Kullback divergence

Set Y1, ..,Yn i.i.d. standard exponential . Then

Λ∗ (x) = ϕ1(x) := x log x − x + 1
and

inf
m>0

∫
Λ∗
(
m
dQ
dP
(x)
)
dP(x) =

∫
Λ∗
(
dQ
dP
(x)
)
dP(x) = KL (Q,P) .

Repete sampling (Y1, ..,Yn) i.i.d. E(1) K times. Hence for sets Ω such
that

KL (intΩ,P) = KL (clΩ,P)

then for large K

1
n
log

1
K
card

{(
PWn

)
j
∈ Ω, 1 ≤ j ≤ K

}
is a proxy of

1
n
log Pr

(
PWn ∈ Ω

)
and therefore an estimator of KL (Ω,P) .
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When Y is E(1) then by Pyke’s Theorem, (W1..,Wn) coincides with the
spacings of the ordered statistics of n i.i.d. uniformly distributed r.v’s on
(0, 1), i.e. the simplest bootstrap version of Pn based on exchangeable
weights.
It also holds with these weights

lim
n→∞

1
n
log Pr

(
PWn ∈ Ω

∣∣∣ xn1 , .., xnn )− 1n log Pr (Pn ∈ Ω) = 0

This weighted bootstrap is the only LDP effi cient one.
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Estimation of the minimum of the Likelihood divergence

KLm (Q,P) :=
∫

ϕ0

(
dQ
dP

)
dP = −

∫
log
(
dQ
dP

)
dP

ϕ0 (x) := − log x + x − 1.
Set Y1, ..,Yn i.i.d. Poisson (1), then

Λ∗ (x) = ϕ0(x) := − log x + x − 1

inf
m>0

∫
Λ∗
(
m
dQ
dP
(x)
)
dP(x) =

∫
Λ∗
(
dQ
dP
(x)
)
dP(x) = KL (Q,P) .

Repete sampling (Y1, ..,Yn) i.i.d. Poisson(1) K times. For large K

1
n
log

1
K
card

{(
PWn

)
j
∈ Ω, 1 ≤ j ≤ K

}
is an estimator of KLm (Ω,P) , since a proxy of

1
n
log Pr

(
PWn ∈ Ω

)
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A more general LDP associated with other divergences

We may also consider some wild bootstrap version, defining the wild
empirical measure by

PWildn :=
1
n

n

∑
i=1
Yi δxi

where the r.v’s Y1,Y2,.. are i.i.d. with common expectation 1 and satisfy a
Cramer condition with cumulant g.f.ΛY .
In this case it is somehow easy to prove the following general result.

Theorem

The wild empirical measure PWildn obeys a LDP in the class of all signed
finite measures endowed by the τ−topology with good rate function
φ (Q,P) =

∫
Λ∗ (dQ/dP) dP; Barbe and Bertail (1995); Najim (2005),

etc

For adequate sets in the class of signed finite measures

lim
n→∞
−1
n
log Pr

(
PWildn ∈ Ω

∣∣∣ xn1 , .., xnn ) = φ (Ω,P) (7)
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Question

Is it possible to build r.v’s Y1, ..,Yn such that

lim
n→∞
−1
n
log Pr

(
PWildn ∈ Ω

∣∣∣ xn1 , .., xnn ) = φ (Ω,P)

holds for a given

φ (Q,P) =
∫

ϕ

(
dQ
dP

)
dP

If yes then for "good" sets Ω , for large K

1
n
log

1
K
card

{(
PWildn

)
j
∈ Ω, 1 ≤ j ≤ K

}
estimates φ (Ω,P) , since a proxy of

1
n
log Pr

(
PWildn ∈ Ω

)
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Set of measures Ω to be considered in may satisfy

φ(int (Ω) ,P) = φ(cl (Ω) ,P) (8)

where int (Ω) and cl (Ω) respectively denote the interior and the closure
of the set Ω inM1 endowed with the corresponding τ or weak topology.
Such sets Ω have been considered in the Large Deviation literature. Some
suffi cient conditions for (8) to hold; see Groeneboom, Osterhoof
Ruymgaart (1979) (among others) for discussions. This is an entire field of
questions and (counter) examples.
Estimation of φ(Ω,P) is somehow an open problem: Usually try to
identify the minimizers; diffi cult cases: Ω defined by moments of

L−Statistics, ..Here find ̂φ(Ω,P) and get the minimizers after (dichotomy
on Ω, etc).
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Cressie-Read divergences and exponential families

A reciprocal statement to the LDP Theorem. We prove that any
Cressie-Read divergence function is the Fenchel-Legendre transform of
some moment generating function Λ. Henceforth we state a one to one
correspondence between the class of Cressie-Read divergence functions and
the distribution of some Y which can be used in order to build a bootstrap
empirical measure of the form PWn .

Michel Broniatowski (Institute) Monte Carlo and divergences June 13, 2016 19 / 36



We turn to some results on exponential families ; see Letac and Mora
(1990).
Natural exponential families and their variance function
Given a positive measure µ on R consider the integral
φµ(t) :=

∫
etxdµ(x) and its domain Dµ, the set of all values of t such

that φµ(t) is finite, which is a convex (possibly void) subset of R. Denote
kµ(t) := log φµ(t) and let mµ(t) := (d/dt) kµ(t) and

s2µ(t) :=
(
d2/dt2

)
kµ(t). Associated with µ is the Natural Exponential

Family NEF(µ) of distributions

dPµ
t (x) :=

etxdµ(x)
φµ(t)

which is indexed by t. It is a known fact that, denoting X t a r.v. with
distribution Pµ

t it holds EX t = mµ(t) and VarX t = s2µ(t).
The NEF(µ) is generated by µ. NEF(ν) =NEF(µ) iff
dν(x) = exp(ax + b)dµ(x) . This class is denoted NEF(B).
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Defined on ImmB (all mµ in B have same image), the function

x → V (x) := s2µom
←
µ (x)

is independent of the peculiar choice of µ in B and is therefore called the
variance function of the NEF(B).

Theorem
The function V characterizes the NEF, and reciprocally.

Starting with Morris (1982) a wide effort has been developed in order to
characterize the basis of a NEF with given variance function. Stats:
heteroscedastic models, variance regressed on the expectation; Tweedie
(1947),...
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Power variance functions

Power variance functions V (x) = Cxα have been explored by various
authors (BarLev and Ennis (1986), etc). NEF with variance function V are
obtained through integration and identification of the resulting moment
generating function. They are generated as follows (we identify the bases).

For γ < 0 by stable distributions on R+ with characteristic exponent
in (0, 1) . The resulting distributions define the Tweedie scale family
(with base these stable laws) Example in the NEF: Inverse Gaussian
(γ = −1/2)
For γ = 0 by the exponential distribution

For 0 < γ < 1 by Compound Gamma-Poisson distributions

For γ = 1 by the Poisson distribution

For γ = 2 by the normal distribution

Other values of γ do not yield NEF’s.
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Theorem
(BarLev, Ennis) All distributions with power variance function are
indefinitely divisible.

Consequence: a major tool for the simulation of the weights, etc*

Fact
The second derivative of the Legendre transform of the cumulant g.f. is
the inverse of the variance function
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Cressie-Read divergences , weights and variance functions

For

ϕγ (x) := C
xγ − γx + γ− 1

γ (γ− 1)
Any Cressie-Read divergence function is the Fenchel Legendre transform of
a moment generating function of a random variable with expectation 1
and variance 1/C in a specific NEF, depending upon the divergence. Let
Y be a r.v. with ψ (t) := log E exp tY and power variance function

V (x) =
1
C
xα

. Then
ϕγ (x) = ψ∗ (x) = sup

t
tx − ψ (t) ;

with α = 2− γ .The NEF is generated by the distribution of Y . Since the
differential equation d 2

dx 2 ϕγ (x) = Cx
−α defines ϕγ (x) in a unique way:

one to one correspondence between Cressie-Read divergences and NEF’s
with power Variance functions. Hence to any Cressie Read divergence
its family of weights.
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Example
The Tweedie scale of distributions defines random variables Y with
expectation 1 and variance Cτ corresponding to Cressie Read divergences
with negative index γ = −τ/ (1− τ). The generator of the NEF (a
measure µ) has characteristic function

f (t) = exp
{
iat − c |t|τ (1+ iβsign (t)ω (t, τ))

}
where a ∈ R, c > 0 and ω (t, τ) = tan

(
πτ
2

)
for τ 6= 1, and ω (t, τ) = 2

π
for τ = 1.
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Example
We consider the case when β = 1 and 0 < τ < 1 corresponding to a stable
distribution on R+.For γ = −1,(τ = 1/2) the resulting divergence is

ϕ−1 (x) =
1
2
(x − 1)2

x

which is the modified χ2 divergence (or Neyman χ2). The associated r.v.
Y has an Inverse Gaussian distribution with expectation 1 and variance 1.
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Example
For γ = 2 it holds

ϕ2 (x) =
1
2
(x − 1)2

which is the Spearman χ2 divergence. The resulting r.v. Y has a Gaussian
distribution with expectation 1 and variance 1. Note that in this case, Y is
not a positive random variable.
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Example
For γ = 1/2 we get

ϕ1/2 (x) = 2
(√
x − 1

)2
which is the Hellinger divergence. The associated random variable Y has a
Compound Gamma-Poisson distribution .

Example
When γ = 3/2 the distribution of Y belongs to the NEF generated by the
stable law µ on R+ with characteristic exponent 1/3,

f (x) = (dµ(x)/dx) = (2π)−1 λK1/2

(
λx1/2

)
exp

(
−px + 3

(
λ2p/4

)1/3
)

where λ and p are positive and K1/2 (z) is the modified Bessel function of
order 1/2 with argument z .
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Example
When γ = 1 then

ϕ0 (x) = x log x − x + 1,
the Kullback-Leibler divergence function, and Y has an exponential
distribution with parameter 1.

Example
When γ = 0 then

ϕ0 (x) = − log x + x − 1,
the Likelihood divergence and Y has a Poisson distribution with parameter
1.
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Rare events, conditional limit results

PWildn ∈ Ω may be a (very) rare event.
Consider

1
K

K

∑
j=1
1Ω

((
PWildn

)
j

)
Calculation may be long when Pr

((
PWildn

)
∈ Ω

)
is small (hit rate very

low). This opens a range of questions.
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Importance Sampling

Recall Let X some random element; assume it has a density p. We want
to evaluate

P :=Pr (X ∈ A)
Let X1, ..,XK be K independent copies of X and

PK :=
1
K

K

∑
i=1
1A (Xi )

the "naive" estimator of P. For any density g where it makes sense

P =
∫
1A (x) p(x)dx =

∫
1A (x)

p(x)
g(x)

g(x)dx

and therefore

Pg ,K :=
1
K

K

∑
i=1
1A (Zi )

p(Zi )
g(Zi )

converges to P.
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"MetaTheorem" The closer the sampling density to the density of X
given X ∈ A , the most "effi cient " the estimator. i.e. the highest the hit
rate, the smallest the variance, etc.
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Here

X := PWildn =
1
n

n

∑
i=1
Yi δx ni .

Assume for example that

Ω :=
{
Q :

∫
f (x)dQ(x) > s

}
say for some f and real a.

(
PWildn ∈ Ω

)
=

(
1
n

n

∑
i=1
Yi f (xni ) > s

)
.

With xni = xi and f (xi ) = ai(
PWildn ∈ Ω

)
=

(
1
n

n

∑
i=1
aiYi > s

)
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The form of the estimator (Y1,1, ..,Yn,1) , ..., (Yn,1, ..,Yn,K ) i.i.d samples
of i.i.d. replications

PK :=
1
K

K

∑
i=1
1(s ,∞)

(
1
n

n

∑
i=j
ajYj ,i

)

The IS estimator

Pg ,K :=
1
K

K

∑
i=1
1(s ,∞)

(
1
n

n

∑
j=1
ajZj ,i

)
p(Z1,i )...p(Zn,i )
g(Z1,i , ..,Zn,i )

where g is any density on Rn where the ratio is defined.
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Approximate the density of (Y1, ..,Yn) given
( 1
n ∑n

j=1 ajYi > s
)
; Gibbs

conditional result (Csiszar, 1984), Dembo, Zeitouni (1996), Br-Caron
(2014),etc.
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Looking for the minimizers

Exploring the minimizers of φ (Q,P) when Q ∈ Ω and Ω := ∪αΩα, α ∈ A
Dichotomy:
Estimate φ (Ω,P) .
Split A into A1 and A2 so that Ω = Ω1 +Ω2

(Ωj := Q ∈ Ω : there exists some α in Aj with Q ∈ Ωα.
Estimate φ

(
Ω1,P

)
and φ

(
Ω2,P

)
If φ (Ω,P) = φ

(
Ωj ,P

)
then a minimizer is in Ωj .

Split these Ωj and iterate
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Example
The Tweedie scale

Let Z be a r.v. with stable distribution on R+ and density p . Its
characteristic function f (t) = E exp itZ is described by the formula

f (t) = exp
{
iat − c |t|τ (1+ iβsign (t)ω (t, τ))

}
where a ∈ R, c > 0 and ω (t, τ) = tan

(
πτ
2

)
for τ 6= 1, and ω (t, τ) = 2

π
for τ = 1.
We consider the case when β = 1 and 0 < τ < 1 corresponding to a stable
distribution on R+ which therefore satisfies the following characterization:
For Z1, ...,Zn n i.i.d. copies of Z there exists an > 0 such that

Z1 + ...+ Zn
an

=d Z

where the equality holds in distribution. Also an = n1/τ. The Laplace
transform of p satisfies

ϕ(t) :=
∫ ∞

0
e−txp(x)dx = e−t

τ
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for all non negative value of t; see [?].
Associated with p is the Natural Exponential family (NEF) with basis p
namely the densities defined for non negative t through

pt (x) := e−txp(x)/e−t
τ

with support R+. For positive t , a r.v. X t with density pt has a moment
generating function E expλX t which is finite in a non void neighborhood
of 0 and therefore has moments of any order.
Consider the density p1(x) = e−x+1p(x) with finite m.g.f. in (−∞, 1) ,
expectation µ = τ and variance σ2 = τ(1− τ). Finally set for all non
negative x

q(x) :=
√

τ(1− τ)p1

(
x
√

τ(1− τ) + τ − 1
)

which is for all 0 < τ < 1 the density of some r.v. Y with expectation 1
and variance 1. The m.g.f. of Y is

E expλY = e exp

[
1− τ√

τ(1− τ)

]
exp−

[
1− λ√

τ(1− τ)

]τ

.
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For τ = 1/2 ,Y has the Inverse Gaussian distribution with parameters
(1, 1) and m.g.f

E expλY = e
(
exp− [1− 2λ]1/2

)
.

The variance function of the NEF generated by a stable distribution with
index τ in (0, 1) writes

V (x) = Cτx
2−τ
1−τ

with

Cτ :=
(
1− τ

τ

) 2−τ
2(1−τ)

.

Example
Compound Gamma Poisson distributions

We briefly characterize this compound distribution and the resulting
weight W . Let µ denote the distribution of SN := ∑N

i=0 Γi where S0 := 0 ,
N is a Poisson (p) r.v. independent of the independent family (Γi )i≥1
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where the Γi’s are distributed with Gamma distribution with scale
parameter 1/λ and shape parameter −ρ. Here

ρ :=
γ− 1

γ

λ := ρ

p := (γ− 1)−1/γ

where we used the results in [?] p1516. Consider the family of distributions
NEF(µ) generated by µ, which has power variance function V (x) = xγ+1

defined on R+. The r.v. W has distribution in NEF(µ) with expectation
and variance 1. Its density is of the form

fW (x) := exp (ax + b) f (x)

where f (x) := (dµ(x)/dx) is the density of SN . The values of the
parameters a and b are

a := −1

b := − (γ− 1)−1/γ
[(
1− γ

γ− 1

)ρ

− 1
]
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