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A story about

• a conjecture of more than 50 years old

• strange difference between classical and

quantum statistics

• Implications for clock synchronization
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1. Classical Fisher Information

• Fisher, 1922, 1925

Fisher information of a probability density

p(x) = p(x1, x2, · · · , xn) (with respect to the

location parameters) is defined as

IF(p) = 4

∫
Rn
|∇
√

p(x)|2dx .

∇: gradient

| · |: Euclidean norm in Rn



More generally, the Fisher information matrix

of a parametric densities pθ(x) on Rn with

parameter θ = (θ1, θ2, · · · , θm) ∈ Rm is the

m ×m matrix

IF (pθ) = (Iij)

defined as

Iij = 4

∫
Rn

∂
√

pθ(x)

∂θi

∂
√

pθ(x)

∂θj
dx

with i , j = 1, 2, · · · , m.



In particular, if n = m and pθ(x) = p(x − θ)

is a translation family, then IF (pθ) = (Iij) is

independent of the parameter θ, and

Iij = 4

∫
Rn

∂
√

p(x)

∂xi

∂
√

p(x)

∂xj
dx .

In this case, we may simply denote IF(pθ) by

IF(p). We see that

IF(p) = trIF(p).



Statistical Origin of Fisher Information

Data: n samples x1, x2, · · ·, xn ∼ pθ(x).

Aim: Estimate the parameter θ.

• Cramér-Rao: Unbiased estimate θ̂

∆θ̂ ≥ 1

nI (pθ)
.

• Maximum Likelihood: θ̂(x1, · · · , xn)
√

n(θ̂ − θ) → N(0, 1/I (pθ)).



Fisher Information vs. Shannon Entropy

• For a probability density p, its Shannon

entropy is S(p) = −
∫

p(x)lnp(x)dx .

• de Bruijin identity:

∂

∂t
S(p ∗ gt)

∣∣∣
t=0

=
1

2
I (p),

where gt(x) = 1√
2πt

e−x2/2t.



2. Superadditivity in Classical Case

Basic Properties of Fisher Information

(a). Fisher information is convex:

IF(λ1p1 + λ2p2) ≤ λ1IF(p1) + λ2IF(p2).

Here p1 and p2 are two probability densities

and λ1 + λ2 = 1, λj ≥ 0, j = 1, 2.

Informational meaning: Mixing decreases

information.



(b). Fisher information is additive:

IF(p1 ⊗ p2) = IF(p1) + IF(p2).

Here p1 and p2 are two probability densities,

and p1 ⊗ p2(x , y) := p1(x)p2(y) is the

independent product density (which is a kind

of tensor product).



(c). Fisher information is invariant under

location translation, that is, for any fixed

y ∈ Rn, if we put py(x) := p(x − y), then

IF(py) = IF(p).



Superadditivity

(d). Fisher information IF(p) is superadditive:

IF(p) ≥ IF(p1) + IF(p2).

Here p(x) = p(x1, x2) is a bivariate density

with marginal densities p1 and p2.



Amusing and Remarkable

1925: Fisher information was introduced.

1991: Superadditivity was discovered and

proved by Carlen.

Statistical meaning:

When a composite system is decomposed

into two subsystems, the correlation between

them is missing, and thus the Fisher

information decreases.



Superadditivity

•Analytical Proof

E. A. Carlen

Superadditivity of Fisher’s information and

logarithmic Sobolev inequalities

Journal of Functional Analysis, 101 (1991),

194-211.



• Statistical Proof

A. Kagan and Z. Landsman

Statistical meaning of Carlen’s

superadditivity of the Fisher information

Statist. Probab. Lett. 32 (1997), 175-179.



3. Quantum Fisher Information

Analogy between Classical and Quantum:

•Probability pθ −→ Density operator

(non-negative matrix with unit trace) ρθ

•Integral
∫

−→ Trace operation tr



Quantum Mechanics as a Framework of

Calculating Probabilities, a Statistical Theory

E. Schrödinger

Quantum mechanics began with statistics,

and will end with statistics.



• In classical statistics, probabilities are given

a priori: (Ω,F , P).

• In quantum physics, probabilities are

generated from the pairing:

(density operators ρ, observable H)

pi = trρEi

where H =
∑

i λiEi is the spectral

decomposition of the self-adjoint operator H .



• H. Araki, M. M. Yanase

Measurement of Quantum Mechanical

Operators

Phys. Rev. 120, 1960

Wigner-Araki-Yanase Theorem

The existence of a conservation law imposes

limitation on the measurement of an

observable. An operator which does not

commute with a conserved quantity cannot

be measured exactly.



• E. P. Wigner and M. M. Yanase

Information content of distribution

Proc. Nat. Acad. Sci., 49, 910-918 (1963)

Skew information

I (ρ, H) = −1

2
tr[
√

ρ, H ]2

where

ρ: density operator

H : any self-adjoint operator

[·, ·]: commutator



• Wigner-Yanase-Dyson information

Iα(ρ, H) = −1

2
tr[ρα, H ][ρ1−α, H ]

where α ∈ (0, 1).



Basic Properties of Skew Information

1 I (ρ, H) ≤ ∆ρH := trρH2 − (trρH)2.

2 Invariance: I (UρU†, H) = I (ρ, H) if

unitary U satisfying UH = HU .

3 Additivity

I (ρ1 ⊗ ρ2, H1 ⊗ 1 + 1⊗ H2)

= I (ρ1, H1) + I (ρ2, H2).

4 Convexity

I (λ1ρ1+λ2ρ2, H) ≤ λ1I (ρ1, H)+λ2I (ρ2, H).



Four Interpretations of Skew Information

• As information content of ρ with respect

to observable not commuting with H

Wigner and Yanase, 1963



• As a measure of non-commutativity

between ρ and H

Connes, Stormer, J. Func. Anal. 1978



• As a kind of quantum Fisher information

D. Petz, H. Hasegawa, On the Riemannian

metric of α-entropies of density matrices,

Lett. Math. Phys. 1996

S. Luo

Phys. Rev. Lett. 2003

IEEE Trans. Inform. Theory, 2004

Proc. Amer. Math. Soc. 2004



• As the quantum uncertainty of H in the

state ρ

S. Luo, Phys. Rev. A, 2005, 2006



Skew Information as Quantum Fisher Information

Generalizing classical Fisher information

IF (pθ) := 4

∫ (
∂
√

pθ(x)

∂θ

)2

dx

to the quantum scenario, we may define

IF (ρθ) := 4tr

(
∂
√

ρθ

∂θ

)2

as a kind of quantum Fisher information.

Here ρθ is a family of density operators.



In particular, if ρθ satisfies the Landau-von

Neumann equation

i
∂ρθ

∂θ
= [H , ρθ], ρ0 = ρ

then

IF (ρθ) = −4tr[ρ1/2, H ]2 = 8I (ρ, H)

S. Luo, Phys. Rev. Lett. 2003



4. Superadditivity in Quantum case

Conjecture: For bipartite density operator ρ,

Iα(ρ, H1⊗1+1⊗H2) ≥ Iα(ρ1, H1)+Iα(ρ2, H2).

Here

ρ1 = tr2ρ, ρ2 = tr1ρ: marginals of ρ

H1, H2: selfadjoint operators over subsystems

1: identity operator

⊗: tensor product of operators



Comments

This conjecture was reviewed by Lieb. The

only non-trivial confirmed case is for pure

states with α = 1
2.

Wigner-Yanase, 1963: Necessary requirement

Lieb, 1973: Absolute requirement



Disproof

F. Hansen, Journal of Statistical Physics, 2007

Numerical counterexample!

Counterintuitive!

Surprising!



L. Cai, N. Li, S. Luo

Journal of Physics A, 2008

A Simple Counterexample. Let n > 2 and

take

ρ =
1

n


n − 2 0 0 0

0 1 1 0

0 1 1 0

0 0 0 0

 , H1 = H2 =

(
0 1

1 0

)
.

Then

I (ρ, H1⊗1+1⊗H2) < I (ρ1, H1) + I (ρ2, H2)

for large n.



Partial Results

S. Luo, Journal of Statistical Physics, 2007

• Let H = H1 ⊗ 1 + 1⊗ H2. If ρ = |Ψ〉〈Ψ|
is a pure state, then superadditivity holds,

that is

Iα(ρ, H) ≥ Iα(ρ1, H1) + Iα(ρ2, H2).



• Let H = H1 ⊗ 1 + 1⊗ H2, and ρ be a

diagonal density matrix. Then superadditivity

holds, that is

Iα(ρ, H) ≥ Iα(ρ1, H1) + Iα(ρ2, H2).



Partial Results

S. Luo and Q. Zhang

Journal of Statistical Physics, 2008

• For any classical-quantum state, the

superadditivity holds.



Tripartite case

R. Seiringer

Lett. Math. Phys. 2007

Failure of superadditivity of the

Wigner-Yanase skew information for tripartite

pure states. The following inequality may be

violated by certain pure states:

Iα(ρ, H) ≥ Iα(ρ1, H1)+ Iα(ρ2, H2)+ Iα(ρ3, H3)

where ρ = |Ψ123〉〈Ψ123|,
H = H1⊗12⊗13+11⊗H2⊗13+11⊗12⊗H3.



5. Weak Superadditivity in Quantum Case

• Though neither

I (ρ, H1⊗1+1⊗H2) ≥ I (ρ1, H1) + I (ρ2, H2)

nor

I (ρ, H1⊗1−1⊗H2) ≥ I (ρ1, H1)+ I (ρ2, H2)

is always true, their sum is true:

I (ρ, H1⊗1+1⊗H2)+ I (ρ, H1⊗1−1⊗H2)

≥ 2
(
I (ρ1, H1) + I (ρ2, H2)

)
.



• It holds that

I (ρ, H1⊗1+1⊗H2) ≥
1

2

(
I (ρ1, H1)+I (ρ2, H2)

)
.



6. Physical Implications of Superadditivity:

Clock Synchronization

• Classical clock: (p, Q) (Q = −i d
dx is the

moment observable)

pt(x) = e−itQp(x).

Quality: classical Fisher information IF (p).

• Quantum clock: (ρ, H)

ρt = e−itHρe itH .

Quality: quantum Fisher information

Iα(ρ, H).



Clock Synchronization

• A quantum clock shared by two parties:

(ρ, H1 ⊗ 1 + 1⊗ H2)

The violation of the superadditivity means

that the sum of the quality of the component

clock will be better than the overall quality:

Iα(ρ1, H1)+Iα(ρ2, H2) > Iα(ρ, H1⊗1+1⊗H2).

• Curious property of quantum clock!



A Conjecture

There does not exit nontrivial quantum

clocks such that

Iα(ρ1, H1) = Iα(ρ2, H2) = Iα(ρ, H1⊗1+1⊗H2).

Intuition: Otherwise, we could copy quantum

timing information.



7. Problems

1. Conditions for superadditivity?

2. Intuitive meaning of the failure of

superadditivity

3. Difference between classical and quantum

from the perspective of Fisher information

4. Quantum logarithmic Sobolev

inequalities?

Thank you!


