## Geometry of Boltzmann Machines

Guido Montúfar

Max Planck Institute for Mathematics in the Sciences, Leipzig

Talk at IGAIA IV, June 17, 2016
On the occasion of Shun-ichi Amari's 80th birthday


- Boltzmann Machines
- Geometric Perspectives
- Universal Approximation (new results)
- Dimension (new results)


## Boltzmann Machines

A Boltzmann machine is a network of stochastic units.
It defines a set of probability vectors
$p_{\theta}(x)=\exp \left(\sum_{i} \theta_{i} x_{i}+\sum_{i<j} \theta_{i j} x_{i} x_{j}-\psi(\theta)\right), \quad x \in\{0,1\}^{N}$,
for all $\theta \in \mathbb{R}^{d}$.



## Boltzmann Machines



Modeling Temporal Sequences

Structured Output Prediction

Recommender Systems

Stochastic Controller


## Information Geometric Perspectives



$$
\eta=\nabla \psi(\theta)
$$

$$
\Delta \theta=\epsilon G^{-1}\left(\eta_{Q}-\eta_{R}\right)
$$

$$
p_{\theta}(x)=\exp \left(\sum_{i} \theta_{i} x_{i}+\sum_{i<j} \theta_{i j} x_{i} x_{j}-\psi(\theta)\right)
$$

- The Boltzmann machine defines an elinear manifold
- MLE is the unique m-projection of the target distribution to this manifold
- Natural gradient learning trajectory is the m-geodesic to the MLE
- Stochastic interpretation of natural parameters


## Information Geometric Perspectives

$$
\frac{\partial G}{\partial w_{i j}}=-\frac{1}{T}\left(p_{i j}-p_{i j}^{\prime}\right)
$$

[Ackley, Hinton, Sejnowski '85]
With hidden units $\quad x=\left(x_{V}, x_{H}\right)$

$$
p_{\theta}\left(x_{V}\right)=\sum_{x_{H}} \exp \left(\sum_{i} \theta_{i} x_{i}+\sum_{i<j} \theta_{i j} x_{i} x_{j}-\psi(\theta)\right)
$$



- The Boltzmann machine defines a curved manifold with singularities
- MLE minimizes KL-divergence from m-flat data manifold to the e-flat fully observable Boltzmann manifold
- Iterative optimization using m- and eprojections, EM-algorithm


## Algebraic Geometric Perspectives

- A Boltzmann machine has a polynomial parametrization and defines a semialgebraic variety in the probability simplex
- Main invariant of interest is the expected dimension and the number of parameters of (Zariski) dense models
- Implicitization: Find an ideal basis that cuts out the model from the probability simplex

$$
\begin{aligned}
& \left\{p=g(\theta): \theta \in \mathbb{R}^{d}\right\} \cap \Delta \\
& \{p \in \Delta: f(p)=0, f \in I\}
\end{aligned}
$$



One polynomial of degree 110 and $>5.5$ trillion monomials
[Cueto, Tobis, Yu '10]

## Questions

$$
p_{\theta}\left(x_{V}\right)=\sum_{x_{H}} \exp \left(\sum_{i} \theta_{i} x_{i}+\sum_{i<j} \theta_{i j} x_{i} x_{j}-\psi(\theta)\right), \quad x_{V} \in\{0,1\}^{V}
$$

- Universal Approximation. What is the smallest number of hidden units such that any distribution on $\{0,1\}^{\vee}$ can be represented to within any desired accuracy?
- Dimension. What is the dimension of the set of distributions represented by a fixed network?

visible
- Approximation errors. MLE, maximum and expected KL-divergence, etc.
- Support sets. Properties of the marginal polytopes.


## Various Possible Hierarchies



## Restricted Boltzmann Machine


[Smolensky '86]
Harmony Theory

[Freund \& Haussler '94] Influence Combination Machine



$$
\text { \#parameters }=V \cdot H+V+H
$$

$$
\begin{aligned}
& p\left(x_{V} \mid x_{H}\right)=\prod_{i \in V} p\left(x_{i} \mid x_{H}\right) \\
& p\left(x_{H} \mid x_{V}\right)=\prod_{j \in H} p\left(x_{j} \mid x_{V}\right)
\end{aligned}
$$

$$
\begin{gathered}
p\left(x_{V}\right) \propto \prod_{j \in H} q_{j}\left(x_{V}\right) \\
q_{j}\left(x_{V}\right)=\lambda_{j} \prod_{i \in V} r_{j, i}\left(x_{i}\right)+\left(1-\lambda_{j}\right) \prod_{i \in V} s_{j, i}\left(x_{i}\right)
\end{gathered}
$$

## Universal Approximation

## Universal Approximation

Let $H_{V}:=\min \left\{H: \mathrm{RBM}\right.$ is a universal approximator on $\left.\{0,1\}^{V}\right\}$
nr. parameters behaviour

## Observation

$$
H_{V} \geq \frac{2^{V}-V-1}{V+1}
$$

Theorem (Freund \& Haussler '94) $\quad H_{V} \leq 2^{V}$.
Theorem (Le Roux \& Bengio ' 10 ) $\quad H_{V} \leq 2^{V}$.
Theorem (Younes '95) $\quad H_{V} \leq 2^{V}-V-1$.
$V 2^{V}$
Theorem (M. \& Ay '11)
$H_{V} \leq \frac{1}{2} 2^{V}-1$.

Theorem (M. \& Rauh '16)

$$
H_{V} \leq \frac{2(\log (V)+1)}{V+1} 2^{V}-1 . \quad \log (V) 2^{V}
$$

## Comparison with mixtures of product distributions

Theorem. Every distribution on $\{0,1\}^{V}$ can be approximated arbitrarily well by a mixture of $k$ product distributions if and only if $k \geq 2^{V-1}$.

$$
\Theta\left(V 2^{V}\right)
$$

[M., Kybernetika '13]

Theorem. Every distribution on $\{0,1\}^{V}$ can be approximated arbitrarily well by distributions from $\mathrm{RBM}_{V, H}$ whenever $H \geq \frac{2(\log (V-1)+1)}{V+1}\left(2^{V}-(V+1)-1\right)+1$.

$$
\Omega\left(2^{V}\right), \quad O\left(\log (V) 2^{V}\right)
$$

## Proof I - Intuition

Each hidden unit extends the RBM along some parameters of the simplex

[M. \& Rauh '16]
[Younes '95]
[M. \& Ay '11]
[Le Roux \& Bengio '08]

## Proof II

## Hierarchical models

Consider the set $\mathcal{E}_{\Lambda}$ of probability vectors

$$
q_{\vartheta}\left(x_{V}\right)=\exp \left(\sum_{\lambda \in \Lambda} \vartheta_{\lambda} \prod_{i \in \lambda} x_{i}-\psi(\vartheta)\right), \quad x_{V} \in\{0,1\}^{V}
$$

for all $\vartheta \in \mathbb{R}^{\Lambda}$, where $\Lambda$ is an inclusion closed subset of $2^{V}$.

Natural parameters
$q_{\vartheta}\left(x_{V}\right) \leftrightarrow-H(x)=\sum_{\lambda \in \Lambda} \vartheta_{\lambda} \prod_{i \in \lambda} x_{i} \leftrightarrow \quad\left(\vartheta_{\lambda}\right)_{\lambda \in \Lambda} \in \mathbb{R}^{\Lambda},\left(\vartheta_{\lambda}\right)_{\lambda \notin \Lambda}=0$

Coordinates for the visible probability simplex
We will use each hidden unit to model a group of monomials

## Proof III

Boltzmann Machine
$p_{\theta}\left(x_{V}\right)=\sum_{x_{H}} \exp \left(\sum_{i} \theta_{i} x_{i}+\sum_{i \in V, j \in H} \theta_{i j} x_{i} x_{j}-\psi(\theta)\right), \quad x_{V} \in\{0,1\}^{V}$
Free Energy

$$
\begin{aligned}
p_{\theta}\left(x_{V}\right) \leftrightarrow-F\left(x_{V}\right) & =\log \left(\sum_{x_{H}} \exp \left(\sum_{i} \theta_{i} x_{i}+\sum_{i \in V, j \in H} \theta_{i j} x_{i} x_{j}\right)\right) \\
& =\sum_{j \in H} \log \left(1+\exp \left(\theta_{j}+\sum_{i \in V} \theta_{i j} x_{i}\right)\right)
\end{aligned}
$$

Natural parameters in the visible probability simplex

$$
\leftrightarrow \quad \vartheta_{B}(\theta)=\sum_{j \in H} \sum_{C \subseteq B}(-1)^{|B \backslash C|} \log \left(1+\exp \left(\theta_{j}+\sum_{i \in C} \theta_{i j}\right)\right), \quad B \in 2^{V}
$$

Sum of independent terms

## Proof IV - Softplus polynomials

$$
\begin{aligned}
\varphi\left(x_{V}\right) & =\log \left(1+\exp \left(\theta_{j}+\sum_{i \in V} \theta_{i j} x_{i}\right)\right) \\
& =\sum_{B \subseteq V} K_{j, B} \prod_{i \in B} x_{i}
\end{aligned}
$$



We show that certain groups of coefficients can be made arbitrary:
Lemma 2. Consider an edge pair $\left(B, B^{\prime}\right)$. Depending on $|B|$, for any $\epsilon>0$ there is a choice of $w_{B} \in \mathbb{R}^{B}$ and $c \in \mathbb{R}$ such that $\left\|\left(K_{B}, K_{B^{\prime}}\right)-\left(J_{B}, J_{B^{\prime}}\right)\right\| \leq \epsilon$ if and only if

$$
\begin{array}{cc}
J_{B^{\prime}} \geq 0,-J_{B}, & \text { for }|B|=1 \\
J_{B^{\prime}} \geq 0,-J_{B} \quad \text { or } \quad J_{B^{\prime}} \leq 0,-J_{B}, & \text { for }|B|=2 \\
J_{B^{\prime}} \geq 0,-J_{B} \text { or } J_{B^{\prime}} \leq 0,-J_{B}, & \text { for }|B|=3 \\
\left(J_{B}, J_{B^{\prime}}\right) \in \mathbb{R}^{2}, & \text { for }|B| \geq 4
\end{array}
$$

Lemma 5. Consider any $B, B^{\prime} \subseteq V$ with $B \cap B^{\prime}=\emptyset$. Let $w_{i}=0$ for $i \notin B \cup B^{\prime}$. Then, for any $J_{B \cup\{j\}} \in \mathbb{R}, j \in B^{\prime}$, and $\bar{\epsilon}>0$, there is a choice of $w_{B \cup B^{\prime}} \in \mathbb{R}^{B \cup B^{\prime}}$ and $c \in \mathbb{R}$ such that $\left|K_{B \cup\{j\}}-J_{B \cup\{j\}}\right| \leq \epsilon$ for all $j \in B^{\prime}$, and $\left|K_{C}\right| \leq \epsilon$ for all $C \neq B, B \cup\{j\}, j \in B^{\prime}$.


## Proof IV - Softplus polynomials

$$
\begin{aligned}
\varphi\left(x_{V}\right) & =\log \left(1+\exp \left(\theta_{j}+\sum_{i \in V} \theta_{i j} x_{i}\right)\right) \\
& =\sum_{B \subseteq V} K_{j, B} \prod_{i \in B} x_{i}
\end{aligned}
$$



## We show that certain groups of coefficients can be made arbitrary:

Lemma 2. Consider an edge pair $\left(B, B^{\prime}\right)$. Depending on $|B|$, for any $\epsilon>0$ there is a choice of $w_{B} \in \mathbb{R}^{B}$ and $c \in \mathbb{R}$ such that $\left\|\left(K_{B}, K_{B^{\prime}}\right)-\left(J_{B}, J_{B^{\prime}}\right)\right\| \leq \epsilon$ if and only if

$$
\begin{array}{cc}
J_{B^{\prime}} \geq 0,-J_{B}, & \text { for }|B|=1 \\
J_{B^{\prime}} \geq 0,-J_{B} \quad \text { or } \quad J_{B^{\prime}} \leq 0,-J_{B}, & \text { for }|B|=2 \\
J_{B^{\prime}} \geq 0,-J_{B} \text { or } J_{B^{\prime}} \leq 0,-J_{B}, & \text { for }|B|=3 \\
\left(J_{B}, J_{B^{\prime}}\right) \in \mathbb{R}^{2}, & \text { for }|B| \geq 4
\end{array}
$$

Lemma 5. Consider any $B, B^{\prime} \subseteq V$ with $B \cap B^{\prime}=\emptyset$. Let $w_{i}=0$ for $i \notin B \cup B^{\prime}$. Then, for any $J_{B \cup\{j\}} \in \mathbb{R}, j \in B^{\prime}$, and $\bar{\epsilon}>0$, there is a choice of $w_{B \cup B^{\prime}} \in \mathbb{R}^{B \cup B^{\prime}}$ and $c \in \mathbb{R}$ such that $\left|K_{B \cup\{j\}}-J_{B \cup\{j\}}\right| \leq \epsilon$ for all $j \in B^{\prime}$, and $\left|K_{C}\right| \leq \epsilon$ for all $C \neq B, B \cup\{j\}, j \in B^{\prime}$.


## Proof V - Coverings

- Each hidden unit adds a linear space of coefficients, corresponding to an exponential family of dim up to $V$
- Adding sufficiently many linear spaces produces any hierarchical model
- Previous proofs added at most 1 or 2 dimensions per hidden unit


Theorem. Let $1 \leq k \leq V$. Every distribution from the $k$-interaction model $\mathcal{E}_{k}$ on $\{0,1\}^{V}$ can be approximated arbitrarily well by distributions from $\mathrm{RBM}_{V, H}$ whenever $H \geq \frac{\log (V-1)+1}{V+1} \sum_{s=2}^{k}\binom{V+1}{s}$.

Dimension

## Dimension

Consider $\mathcal{M}=\left\{p_{\theta}: \theta \in \mathbb{R}^{d}\right\} \subseteq \Delta_{N-1}$ parametrized by $\phi: \mathbb{R}^{d} \rightarrow \Delta_{N-1} ; \theta \mapsto p_{\theta}$.


Conjecture (Cueto, Morton, Sturmfels, 2010). The restricted Boltzmann machine has the expected dimension, i.e., it is a semialgebraic set of dimension $\min \left\{V H+V+H, 2^{V}-1\right\}$ in $\Delta_{2^{V}-1}$.

## Dimension

Theorem (Cueto, Morton, Sturmfels, 2010). The restricted Boltzmann machine has the expected dimension $\min \left\{V H+V+H, 2^{V}-1\right\}$ when $H \leq 2^{V-\left\lceil\log _{2}(V+1)\right\rceil}$ and when $H \geq 2^{V-\left\lfloor\log _{2}(V+1)\right\rfloor}$.

|  | $n$ | $k \leq$ | $k \geq$ |
| :---: | :---: | :---: | :---: |
|  | 5 | $2^{2}$ | 7 |
|  | 6 | $2^{3}$ | 12 |
|  | 7 | $2^{4}$ | $2^{4}$ |
|  | 8 | $2^{2} \cdot 5$ | $2^{5}$ |
|  | 9 | $2^{3} \cdot 5$ | 62 |
|  | 10 | $2^{3} \cdot 9$ | 120 |
|  | 11 | $2^{4} \cdot 9$ | 192 |
|  | 12 | $2^{8}$ | 380 |
|  | 13 | $2^{9}$ | 736 |
| Special | 14 | $2^{10}$ | 1408 |
|  | 15 | $2^{11}$ | $2^{11}$ |
|  | 16 | $2^{5} \cdot 85$ | $2^{12}$ |
|  | 17 | $2^{6} \cdot 83$ | $2^{13}$ |
| Cases | 18 | $2^{8} \cdot 41$ | $2^{14}$ |
|  | 19 | $2^{12} \cdot 5$ | 31744 |
|  | 20 | $2^{12} \cdot 9$ | 63488 |
|  | 21 | $2^{13} \cdot 9$ | 122880 |
|  | 22 | $2^{14} \cdot 9$ | 245760 |
|  | 23 | $2^{15} \cdot 9$ | 393216 |
|  | 24 | $2^{19}$ | 786432 |
|  | 25 | $2^{20}$ | 1556480 |
|  | 26 | $2^{21}$ | 3112960 |
|  | 27 | $2^{22}$ | 6029312 |
|  | 28 | $2^{23}$ | 12058624 |
|  | 29 | $2^{24}$ | 23068672 |
|  | 30 | $2^{25}$ | 46137344 |
|  | 31 | $2^{26}$ | $2^{26}$ |
|  | 32 | $2^{20} \cdot 85$ | $2^{27}$ |
|  | 33 | $2^{21} \cdot 85$ | $2^{28}$ |


| $n$ | $k \leq$ |
| :---: | :---: |
|  |  |
| 35 | $\mathbf{2}^{\mathbf{2 3}} \cdot \mathbf{8 3}$ |
| 37 | $\mathbf{2}^{\mathbf{2 6}} \cdot \mathbf{4 1}$ |
| 39 | $\mathbf{2}^{31} \cdot \mathbf{5}$ |
| 47 | $\mathbf{2}^{\mathbf{3 8}} \cdot \mathbf{9}$ |
| 63 | $2^{57}$ |
| 70 | $\mathbf{2}^{43} \cdot \mathbf{1 6 5 7 0 0 9}$ |
| 71 | $\mathbf{2}^{63} \cdot \mathbf{3}$ |
| 75 | $\mathbf{2}^{63} \cdot \mathbf{4 1}$ |
| 79 | $\mathbf{2}^{\mathbf{7 0}} \cdot \mathbf{5}$ |
| 95 | $\mathbf{2}^{\mathbf{8 5}} \cdot \mathbf{9}$ |
| 127 | $2^{120}$ |
| 141 | $\mathbf{2}^{\mathbf{1 1 3}} \cdot \mathbf{1 6 5 7 0 0 9}$ |
| 143 | $\mathbf{2}^{\mathbf{1 3 4}} \cdot \mathbf{3}$ |
| 151 | $\mathbf{2}^{\mathbf{1 3 8}} \cdot \mathbf{4 1}$ |
| 159 | $\mathbf{2}^{\mathbf{1 4 9}} \cdot \mathbf{5}$ |
| 163 | $\mathbf{2}^{\mathbf{1 5 1}} \cdot \mathbf{1 9}$ |
| 191 | $\mathbf{2}^{\mathbf{1 8 0}} \cdot \mathbf{9}$ |
| 255 | $2^{247}$ |
| 270 | $\mathbf{2}^{\mathbf{2 0 2}} \cdot \mathbf{1 0 2 1 2 7 3 0 2 8 3 0 2 2 5 8 9 1 3}$ |
| 283 | $\mathbf{2}^{\mathbf{2 5 4}} \cdot \mathbf{1 6 5 7 0 0 9}$ |
| 287 | $\mathbf{2}^{\mathbf{2 7 7}} \cdot \mathbf{3}$ |
| 300 | $\mathbf{2}^{\mathbf{2 2 0}} \cdot \mathbf{3 3 4 8 8 2 4 9 8 5 0 8 2 0 7 5 2 7 6 1 9 5}$ |
| 303 | $\mathbf{2}^{\mathbf{2 8 8}} \cdot \mathbf{4 1}$ |
| 319 | $\mathbf{2}^{\mathbf{3 0 8}} \cdot \mathbf{5}$ |
| 327 | $\mathbf{2}^{\mathbf{3 1 4}} \cdot \mathbf{1 9}$ |
| 383 | $\mathbf{2}^{\mathbf{3 7 1}} \cdot \mathbf{9}$ |
| 511 | $2^{502}$ |
| 512 | $\mathbf{2}^{443} \cdot \mathbf{1 0 2 1 2 7 3 0 2 8 3 0 2 5 8 8 9 1 3}$ |
|  |  |



Theorem (M. \& Morton, 2016). The restricted Boltzmann machine has the expected dimension $\min \left\{V H+V+H, 2^{V}-1\right\}$.

## Proof I - Marginals of Exponential Families

Let $\mathcal{M}_{F}$ be given by

$$
p_{\theta}(x)=\sum_{y \in \mathcal{Y}} \frac{1}{Z(\theta)} \exp (\langle\theta, F(x, y)\rangle), \quad x \in \mathcal{X}, \quad \theta \in \mathbb{R}^{d} .
$$

Dimension is maximum rank of Jacobian matrix

$$
\begin{gathered}
J_{\mathcal{M}_{F}}(\theta)=\left(\sum_{y} p_{\theta}(x, y) F(x, y)-\sum_{y} p_{\theta}(x, y) \sum_{x^{\prime}, y^{\prime}} p_{\theta}\left(x^{\prime}, y^{\prime}\right) F\left(x^{\prime}, y^{\prime}\right)\right)_{x} \\
\operatorname{rank}\left(J_{\mathcal{M}_{F}}(\theta)\right)=\operatorname{rank}\left(\sum_{y} p_{\theta}(x, y) F(x, y)\right)_{x}-1 \\
=\operatorname{rank}\left(\sum_{y} p_{\theta}(y \mid x) F(x, y)\right)_{x}-1 \\
\text { expectation parameters of conditional distributions }
\end{gathered}
$$

## Tropical Dimension Approach - Intuitive View

$$
\begin{gathered}
\max _{\theta} \operatorname{rank}\left(\sum_{y} p_{\theta}(x \mid y) F(x, y)\right)_{x} \geq \max _{\theta} \operatorname{rank}\left(F\left(x, h_{\theta}(x)\right)\right)_{x} \\
h_{\theta}(x):=\operatorname{argmax}_{y} p_{\theta}(y \mid x)=\operatorname{argmax}_{y}\langle\theta, F(x, y)\rangle
\end{gathered}
$$



## Tropical Dimension Approach - Intuitive View



- Tropical approach is very powerful. In many cases the tropical rank is associated to known combinatorial quantities
- However, many cases it leads to very hard combinatorial problems


## Proof II

Theorem (Catalisano, Geramita, Gimigliano, 2011 - rephrased). The set of mixtures of $H+1$ product distributions of $V$ binary variables has the expected dimension $\min \left\{V H+V+H, 2^{V}-1\right\}$, whenever $V \geq 5$.

Observation. The sufficient statistics matrix of $\mathrm{RBM}_{V, H}$ satisfies $F(x, y)=$ $A(x) \otimes B(y)$, where $A, B$ describe $V$ and $H$ independent binary variables and each includes a constant row.

Lemma. Let $A, B, C$ be sufficient statistics matrices, each containing a constant row. If $B$ describes $H$ independent binary variables and $C$ describes one categorical variable with $H+1$ values, then $\operatorname{dim}\left(\mathcal{M}_{A \otimes B}\right) \geq \operatorname{dim}\left(\mathcal{M}_{A \otimes C}\right)$.

## Proof III

- For the RBM we have

$$
\operatorname{rank}\left(J_{\mathrm{RBM}_{n, m}}(\theta)\right)=\operatorname{rank}\left(\left[\begin{array}{c}
1 \\
x
\end{array}\right] \otimes \mathbb{E}_{y \mid x}\left[\begin{array}{l}
1 \\
y
\end{array}\right]\right)_{x} .
$$

- For the mixture of products we have

$$
\operatorname{rank}\left(J_{\mathrm{M}_{n, m+1}}(\theta)\right)=\operatorname{rank}\left(\left[\begin{array}{c}
1 \\
x
\end{array}\right] \otimes \mathbb{E}_{j \mid \times}\left[\begin{array}{c}
1 \\
e_{j}
\end{array}\right]\right)_{x} .
$$

- We show that to any $J_{\text {Mixt }_{n, m+1}}(\theta)$ there is a $J_{\mathrm{RBM}_{n, m}}(\theta)$ with the same rank.


## Proof IV

$$
\begin{array}{cc}
\mathbb{E}_{y \mid x}\left[\begin{array}{l}
1 \\
y
\end{array}\right]=\left[\begin{array}{c}
1 \\
p_{\theta}\left(y_{1}=1 \mid x\right) \\
\vdots \\
p_{\theta}\left(y_{m}=1 \mid x\right)
\end{array}\right] & \mathbb{E}_{j \mid x}\left[\begin{array}{c}
1 \\
e_{j}
\end{array}\right]=\left[\begin{array}{c}
1 \\
\tilde{p}_{\theta}(1 \mid x) \\
\vdots \\
\tilde{p}_{\theta}(m \mid x)
\end{array}\right] \\
\dot{E}_{y \mid x}\left[\begin{array}{c}
1 \\
y
\end{array}\right]
\end{array}
$$

## Conclusion

- Boltzmann machines define marginals of exponential families with an interesting geometry.
- I presented new results on two basic questions:


## Universal approximation

RBMs and BMs are universal approximators with significantly less parameters than previously known.
This result also shows that universal approximation with RBMs require significantly less parameters than with mixtures of products

## Dimension

RBMs always have the expected dimension.
This completes the dimension characterization initiated by Cueto, Morton, Sturmfels, and resolves their conjecture positively

## Open Problems

- Can the universal approximation bounds for restricted Boltzmann machines be improved?
- Do deep Boltzmann machines have the expected dimension?
- Are less parameters possible with deep Boltzmann machines?


## Literature

## Literature

Montúfar \& Rauh, Hierarchical Models as Marginals of Hierarchical Models, arXiv:1508.03606v2 Montúfar \& Morton, Dimension of Marginals of Kronecker Product Models, arXiv:1511.03570

## Related Literature

Amari, Kurata, Nagaoka, Information Geometry of Boltzmann Machines, IEEE Transactions on Neural Networks, Vol 3 Issue 2, pp. 260-271,1992

Younes, Synchronous Boltzmann Machines can be Universal Approximators, Applied Mathematics Letters 9: 109-113,1996

Cueto, Morton, Sturmfels, Geometry of the Restricted Boltzmann Machine, Algebraic Methods in Statistics and Probability 2, AMS Special Session, 2010

Montúfar, Universal approximation depth and errors of narrow belief networks with discrete units, Neural Computation 26: 1386-1407, 2014
Montúfar \& Ay, Refinements of universal approximation results for DBNs and RBMs, Neural Computation 23: 1306-1319, 2011
Montúfar, Mixture decompositions of exponential families using a decomposition of their sample spaces, Kybernetika 49: 23-39, 2013
Montúfar \& Morton, Discrete Restricted Boltzmann Machines, JMLR 16: 653-672, 2015

