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One of the most commonly used Riemannian metrics on the set of symmetric,
positive definite (SPD) matrices is the Log-Euclidean metric [1]. In this metric, the
geodesic distance between two SPD matrices A and B is given by

diogr (A, B) = |[log(A) —log(B)||r, (1)

where log denotes the matrix principal logarithm.

Log-Hilbert-Schmidt distance. The generalization of the Log-Euclidean met-
ric to the infinite-dimensional manifold 3 (#) of positive definite Hilbert-Schmidt op-
erators on a Hilbert space H has recently been given by [2]. In this metric, termed Log-
Hilbert-Schmidt (Log-HS) metric, the distance between two positive definite Hilbert-
Schmidt operators A+ I > 0 and B+ ul > 0, A, B € HS(H), v, > 0, is given
by

dogus[(A +~1), (B + pl)] = |[log(A + 1) —log(B + pl)|[ens, (2)

with the extended Hilbert-Schmidt norm defined by ||A + ~1||2us = ||Al|fs + 72

RKHS covariance operators. As examples of positive Hilbert-Schmidt oper-
ators, consider covariance operators in reproducing kernel Hilbert spaces (RKHS),
which play an important role in machine learning and statistics. Let X be any non-
empty set. Let K be a positive definite kernel on X x X and Hx its induced RKHS. Let
H be any Hilbert feature space for K, assumed to be separable, which we identify with
Hi, with the corresponding feature map ® : X — H, so that K(z,y) = (®(z), ®(y))n
V(z,y) € X x X. Let x = [z1,...,2m] be a data matrix randomly sampled from X
according to some probability distribution. The feature map ® gives the (potentially
infinite) data matrix ®(x) = [®(z1),...,®(zm)] in H. Formally, ®(x) is a bounded
linear operator ®(x) : R™ — H, defined by ®(x)b = 377", b;®(z;), b € R™. The
covariance operator for ®(x) is defined by

Cate) = B0 In®(x)" H > H, o = I~ 115 3)

For v > 0, > 0, the Log-HS distance diogus[(Cax) +7I#), (Coryy + p1l3)] between two
regularized covariance operators (Co(x) + 7)) and (Co(y) + pl#n)

diogns = ||10g(Co(x) + 7I#) — 1og(Ca(y) + puln)||ens (4)



has a closed form in terms of the corresponding Gram matrices [2]. This distance is
generally computationally intensive for large m, however.

Approximation by finite-dimensional Log-Euclidean distances. To reduce
the computational cost, we consider computing an explicit approzimate feature map
dp : X - RP, where D is finite and D << dim(#), so that

<(i3D(.CE)7 (pD(y))RD = kD(xa y) ~ K(I7 y)7 with Dlgnoo kD(mv y) = K(x> y)7 (5)
Y(z,y) € X x X. With the approximate feature map &p, we have the matrix ®p(x) =
[®p(21),...,®p(zm)] € RP*™ and the approximate covariance operator
1. .
Cape) = Er1>D(x)Jm<I:D(x)T :R” - R”. (6)

We then consider the following as an approximate version of the Log-HS distance
given in Formula (4):

(7)

Key theoretical question. We need to determine whether Formula (7) is truly a
finite-dimensional approximation of Formula (4), in the sense that

Hlog (C@DM + wID) — log (C‘i’D(Y) + /.LID) HF .

i, [1o8(Capog +710) ~ sy + 1)
= |[1og(Cox) + vIn) — 10g(Ca(y) + plr)|[ens- (8)
The following results shows that in general, this is not possible.

Theorem 1. Assume that v # u, v >0, > 0. Then

s Hlog(Cam(x) +7Ip) —10g(Cs () + ‘UJD)HF -

In practice, however, it is reasonable to assume that we can use the same regular-

ization parameter for both Cy (., and C , that is to set v = p. In this setting, we
obtain the necessary convergence, as follows.

Theorem 2. Assume that v = u > 0. Then

Jim_[108(Ca ) +710) = 108(C ) +710) |
= [[1og(Cax) + 1) = 10g(Ca(y) +vIn)|lens- 9)
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