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Abstract

Finite-dimensional approximations

We show conditions under which the infinite-dimensional Log-Hilbert-Schmidt distance between RKHS The distance in Eq. (1) can be computationally intensive on a large set of covariance operators.
covariance operators can be approximated by the finite-dimensional Log-Euclidean distance. Approximate feature map 0 n: X =>RP D<< dim(H), so that
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(Dp(z),Pp(y))gp = Kp(z,y) ~ K(z,y), lm Kp(z,y)=K(z,y), Y(r,y)e X x X.

D — o0

Log-Hilbert-Schmidt distance

Log-Euclidean distance. This is the geodesic distance between two matrices A, B € Sym™ " (n) in the Log- Approximate covariance operator Cg .y = %Cﬁ p(x)Jm®p(x)T : RP — RP.
Euclidean metric [1] Approximate Log-Hilbert-Schmidt distance

dioge(A, B) = ||log(A) — log(B)||F-

(2)

[l02 (Ca0 +110) =108 (Cap) + 1) | .

Log-Hilbert-Schmidt distance. This generalizes the Log-Euclidean distance to the infinite-dimensional
manifold >(#) of positive definite Hilbert-Schmidt operators on a separable Hilbert space H [2]. For two
operators A +~1 > 0,B+ ul >0, A, B € HS(H), v,u > 0,

Convergence. We need to determine whether (2) is truly a finite-dimensional approximation of (1), i.e.

Dli_r)rloo |log(C@>D(X) +7Ip) —10g(Cg () + ,uID)HF: [1og(Co(x) + v ) —1og(Ca(y) + pda)||ens-
diogns|[(A + 1), (B 4 pl)| = [|log(A 4 yI) — log(B + pl)|ens;

Theorem 1. Assume that oy >0, 14> 0. Then
with the extended Hilbert-Schmidt norm ||A + vI||Zxq = || A]lFHs + 77 VFE Y H

Jim |10g(Cy, ) +710) ~108(C ) + )| = o0

RKHS and covariance operators

. , o Theorem 2. Assume that v = > 0. Then
Reproducing kernel Hilbert spaces (RKHS) and feature maps. Let X be any non-empty set, K a positive

definite kernel on & x X, with corresponding RKHS H . Then 3 a separable Hilbert space H, which can lim |10 C || _
/ - +~Ip) — log(C'; + ~1 = || log(Ca(x) + 71y ) — log(C + ~v13/)||eHS -
be identified with Hx, and a corresponding feature map ¢ : X — H, so that D—o0 8(Cap 0 +710) 8(Cape) +710) F |10g(Caeg +713) 8(Cagy) + 71 lets

K(z,y) = (2(x), 2(y))n V(z,y) € X' x &, Random Fourier approximation Example: Image classification

Covariance operators. Let x = |21, ..., z,,| be a data matrix randomly sampled from & according to some Let K : R"xR" — R be of the form K (z,y) = k(z—y) for some
probability distribution. The feature map & gives the bounded linear operator ®(x) : R”™ — H, defined by positive definite function k& on R™. By Bochner’s Theorem, 3 a

Method Accuracy

.. . Approx LogHS 53.91%(£4.34)
finite positive measure p on R" s.t. Log-HS 56.74%(+2.87)
| Hilbert-Schmidt | 50.17%(+2.17%)
K(z,y) = / e TV dp(w) = / cos((w, z — y))p(w)dw. Log-Euclidean 42.70%(+3.45)
! ’ Euclidean 26.87%(£3.52%)

O(x)b =) b;®(x;), beR™
j=1

P be viewed infinite) dat trix ®(x) = [®(x1),...,P(x,,)] in H, with ' t , , , ,
(x) can be viewed as a (infinite) data matrix ®(x) = [®(x1) ()] in ‘H, with covariance operator Without loss of generality, we can assume that p is a probabil-
! | . . C z—y|? The classification of fish images ac-
Co(x) = E(I)(x)JmCI)(X)* H—->H, J,=1,— Elmlﬁ. ity measure. For the Gaussian kernel K (z,y) = e -2 , we quired from live underwater videos.

have p(w) = {9 =~ T AN (0, %1,,). To approximate | | The dataset contains 23 species of

(27)m :
For two covariance operators Cy(x) and Cy (4, the Log-HS distance K (x,y), we sample D points {w;}? ; from the distribution p fish. At each pixel, the color values,
and compute the empirical version red, green, blue, are sampled. All
diogtis = || 10g(Co(x) + V) —10g(Ca(y) + pdp)||ems (1) classifications were done by Gaussian

Support Vector Machine, using the cor-
responding distances. Approx Log-HS,
Log-HS, and Hilbert-Schmidt distances
were computed with the Gaussian ker-
nel. Approx Log-HS, using the random
Fourier feature, D = 200, is 50 times
(cos({wy, z)), sin({w;, @))f:l c R*”. aster to compute than Log-HS [3].

4

D
as a closed form expressed in terms of Gram matrices. Kp(z,y) = % Z cos({w;, z — 1)) D—o0, K(z,y) as.
71=1
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