Higher Order Analysis of Bayesian Cross Validation in Regular Asymptotic Theory

Information Geometry and Its Applications IV In honor of Prof. Amari's 80th birthday June 12-17, 2016, Liblice, Czech Republic

Sumio Watanabe
Tokyo Institute of Technology

Purpose of this Research

Answer to the Bayesian question: "Is choosing a prior by minimizing cross validation really optimal for minimizing generalization loss?"

S. Watanabe, Bayesian Cross Validation and WAIC for Predictive Prior Design in Regular Asymptotic Theory

arXiv:1503.07970

Why Higher Order is Necessary

(1) In Bayesian statistics, it is frequently discussed how to choose (or optimize) a prior.

(2) In regular statistical models, the first order statistics does not depend on a prior.

(3) Higher order analysis is necessary to study the effect of a prior.

Optimality Measure of a Prior

In this presentation, we study the optimality of a prior on the following situations.

- (1) Evaluation measure : generalization loss(= KL loss) of Bayes predictive distribution.
- (2) Optimizing criteria: cross validation, information criteria, and marginal likelihood.
- (3) Statistical model: regular

Contents

- 1. Foundations of Bayesian Statistics
- 2. Main Theorem
- 3. Proof

4. Example

Notations: Model and Prior

- (1) q(x): an unknown true probability density on R^N .
- (2) $X^n=(X_1,X_2,...,X_n)$: a set of random variables which are independently subject to q(x).
- (3) p(x|w) : a probability density on R^N for a given parameter w in R^d.

Note: q(x) is not realizable by p(x|w) in general.

- (4) $\varphi_0(w)$: a fixed prior on \mathbb{R}^d (improper).
 - $\varphi(w)$: a candidate prior on R^d (improper).

Definition of Bayesian Estimation

(1) Posterior distribution is defined by

$$p(w|X^n) = (1/Z) \varphi(w) \prod_{i=1}^n p(X_i|w),$$

where Z is a normalizing constant.

Note: Even if a prior is improper, we assume Z is finite.

- (2) $E_w[$] shows the expected value over $p(w|X^n)$. $V_w[$] shows the variance over $p(w|X^n)$.
- (3) Predictive distribution

$$p(x|X^n) = E_w[p(x|w)].$$

Generalization and Cross Validation

(1) Random generalization loss

$$G_n(\phi) = -\int q(x) \log p(x|X^n) dx.$$

(2) Average generalization loss

$$E[G_n(\varphi)].$$

(3) Cross validation loss (Leave-one-out)

$$CV_n(\phi) = -(1/n)\sum_{i=1}^{n} \log p(X_i|X^n - X_i).$$

(4) Average cross validation loss

$$E[CV_n(\varphi)].$$

ISCV and WAIC

(1) Importance sampling CV (Gel'fand et. al., 1992)

$$ISCV_n(\phi) = (1/n) \sum_{i=1}^{n} log E_w[1/p(X_i|w)].$$

It is proved that $CV_n(\varphi) = ISCV_n(\varphi)$.

(2) Widely Applicable Information Criterion (Watanabe, 2009)

WAIC_n(
$$\varphi$$
) = - (1/n) $\sum_{i=1}^{n}$ log E_w[p(X_i|w)]

+
$$(1/n) \sum_{i=1}^{n} V_{w} [log p(X_{i}|w)].$$

In regular models, $CV_n(\phi) = WAIC_n(\phi) + O_p(1/n^3)$.

Marginal likelihood

For an improper prior $\varphi(w)$, a priori probability distribution is

$$\varphi(w) / \int \varphi(w) dw$$
.

The minus log marginal likelihood (I.J. Good) is

$$F_n(\varphi) = -\log \int_{\varphi} \varphi(w) \prod_{i=1}^n p(X_i|w) dw + \log \int_{\varphi} \varphi(w) dw.$$

Note: If $\int \phi(w) dw = \infty$, the marginal likelihood can not be defined, whereas CV and WAIC can be defined.

Note: If you employ the marginal likelihood as a criterion, a prior function should be proper. However, the optimal prior function that minimizes the generalization loss may be improper in general.

Basic Question

By the definition, for an arbitrary integer n>1,

$$E[G_{n-1}(\varphi)] = E[F_n(\varphi)] - E[F_{n-1}(\varphi)],$$

 $E[G_{n-1}(\varphi)] = E[CV_n(\varphi)].$

However,

 $G_{n-1}(\varphi)$ is not equal to $F_n(\varphi)$ - $F_{n-1}(\varphi)$,

 $G_{n-1}(\varphi)$ is not equal to $CV_n(\varphi)$.

Basic Question:

Assume $\varphi(w) = \varphi(w|\alpha)$, where α is a hyperparameter. Does α that minimizes $CV_n(\varphi)$ or $F_n(\varphi)$ also minimizes $G_n(\varphi)$ and $E[G_n(\varphi)]$, asymptotically ?

Contents

1. Basic Bayesian procedures

2. Main Theorem

3. Proof

4. Example

Notations I

- (1) $\varphi_0(w)$: A fixed prior (for example, $\varphi_0(w) \equiv 1$)
- (2) $L_n(w) = (1/n) \sum_{i=1}^n \log p(X_i|w) \log \varphi_0(w)$
- (3) $w^* = \operatorname{argmin} L_n(w) : MAP \text{ estimator for } \varphi_0(w)$
- (4) $L(w) = \int q(x) \log p(x|w) dx$
- (5) $w_0 = \operatorname{argmin} L(w)$

Note: If $\varphi_0(w) = 1$ is chosen as a fixed prior, then it is improper. $L_n(w)$ is a minus likelihood function and w^* is MLE. w^* does not depend on a candidate prior.

Notations II

(1) For a given function f(w),

$$f_{k_1k_2...k_m}(w) = (a/aw^{k_1}) (a/aw^{k_2}) \cdot \cdot \cdot (a/aw^{k_m}) f(w).$$

(2) Einstein's summation convention

(3) Assumption: $(L(w))_{k_1k_2}$ is positive definite in a neighborhood of w_0

$$(g_n)^{k_1k_2}(w) = Inverse matrix of (L_n(w))_{k_1k_2}$$

$$(g)^{k_1k_2}(w) = Inverse matrix of (L(w))_{k_1k_2}$$

Note: These functions do not depend on a candidate prior.

Notations III

Correlations

$$(F_n)_{k_1, k_2}(w) = (1/n) \sum_{i=1}^{n} (\log p(X_i|w))_{k_1} (\log p(X_i|w))_{k_2}$$

$$(F_n)_{k_1k_2, k_3}(w) = (1/n) \sum_{i=1}^{n} (\log p(X_i|w))_{k_1k_2} (\log p(X_i|w))_{k_3}$$

Average correlations

$$(F)_{k_1, k_2}(w) = E[(F_n)_{k_1, k_2}(w)]$$

$$(F)_{k_1k_2, k_3}(w) = E[(F_n)_{k_1k_2, k_3}(w)]$$

Note: These functions do not depend on a candidate prior.

Notations IV

For higher order analysis, the following functions are necessary.

$$\begin{split} (A_n)^{k_1k_2}(w) &= (1/2) \; (g_n)^{k_1k_2}(w) \\ (B_n)^{k_1k_2}(w) &= (1/2) \; \{ \; (g_n)^{k_1k_2}(w) + (g_n)^{k_1k_3}(w) \; (g_n)^{k_2k_4}(w) \; (F_n)_{k_3, \; k_4}(w) \; \} \\ (C_n)^{k_1}(w) &= (g_n)^{k_1k_2}(w) \; (g_n)^{k_3k_4}(w) \; (F_n)_{k_2k_4,k_3}(w) \\ &\quad - (1/2) \; (g_n)^{k_1k_2}(w) \; (g_n)^{k_3k_4}(w) \; (L_n)_{k_2k_3k_4}(w) \\ &\quad - (1/2) \; (g_n)^{k_1k_2}(w) \; (g_n)^{k_3k_4}(w) (g_n)^{k_5k_6}(w) (L_n)_{k_2k_3k_5}(w) (F_n)_{k_4,k_6}(w) \end{split}$$

Definitions of (A) k1 k2 (w), (B) k1 k2 (w), and (C) k1 (w)

(A) $^{k1 k2}$ (w), (B) $^{k1 k2}$ (w), and (C) k1 (w) are defined by the same equations as $(A_n)^{k1 k2}$ (w), $(B_n)^{k1 k2}$ (w), and $(C_n)^{k1}$ (w) by using $(g)^{k_1k_2}$ (w), $(F)_{k_1, k_2}$ (w), and $(F)_{k_1k_2, k_3}$ (w) in stead of $(g_n)^{k_1k_2}$ (w), $(F_n)_{k_1, k_2}$ (w), and $(F_n)_{k_1k_2, k_3}$ (w).

Note: These functions do not depend on a candidate prior.

Notations V

For higher order analysis, the followings are necessary. Mathematical relations between priors $\varphi(w)$ and $\varphi_0(w)$.

 $\Phi(w) = \varphi(w)/\varphi_0(w)$. Ratio of candidate and fixed priors.

$$\begin{aligned} M_{n}(\phi, w) &= (A_{n})^{k_{1}k_{2}}(w) (\log \Phi)_{k_{1}}(\log \Phi)_{k_{2}} \\ &+ (B_{n})^{k_{1}k_{2}}(w) (\log \Phi)_{k_{1}k_{2}} + (C_{n})^{k_{1}}(w) (\log \Phi)_{k_{1}k_{2}} \end{aligned}$$

$$M(\phi, w) = (A)^{k_1k_2}(w) (\log \Phi)_{k_1}(\log \Phi)_{k_2}$$

$$+ (B)^{k_1k_2}(w) (\log \Phi)_{k_1k_2} + (C)^{k_1}(w) (\log \Phi)_{k_1}$$

Note: Neither (A) $^{k1, k2}(w)$, (B) $^{k1, k2}(w)$, (C) $^{k1}(w)$, (A_n) $^{k1, k2}(w)$, (B_n) $^{k1, k2}(w)$, nor (C_n) $^{k1}(w)$ depends on the candidate prior $\phi(w)$. A candidate prior affects only (log Φ).

Theorem

 $w^* = MAP$ estimator for $\phi_0(w)$

(1) Mathematical relations asymptotically satisfy

$$M_n(\phi, w^*) = M(\phi, w_0) + O_p(1/n^{1/2}),$$

$$E[M_n(\phi, w^*)] = M(\phi, w_0) + O(1/n).$$

Note: Minimizing $M_n(\varphi, w^*)$ is asymptotically equivalent to minimizing $E[M_n(\varphi, w^*)]$ and $M(\varphi, w_0)$.

Theorem

(2) Cross validation asymptotically satisfies

$$CV(\phi) = CV(\phi_0) + (1/n^2) M_n(\phi, w^*) + O_p(1/n^3)$$

$$E[CV(\phi)] = E[CV(\phi_0)] + (1/n^2) M(\phi, w_0) + O(1/n^3)$$

Note: Minimizing $CV(\varphi)$ is asymptotically equivalent to minimizing $M_n(\varphi, w^*)$.

Note: Minimizing $CV(\varphi)$ is asymptotically equivalent to minimizing $E[CV(\varphi)]$.

Theorem

(3) Generalization loss asymptotically satisfies

$$\begin{split} G_{n}(\phi) &= G_{n}\left(\phi_{0}\right) + O_{p}(1/n^{3/2}) \\ E[\;G_{n}\left(\phi\right)\;] &= E[\;G_{n}\left(\phi_{0}\right)\;] + (1/n^{2})\;M(\phi,w_{0})\; + O(1/n^{3}) \end{split}$$

Note: Minimizing $CV_n(\varphi)$ is not asymptotically equivalent to minimizing $G_n(\varphi)$.

Note: Minimizing $CV_n(\varphi)$ is asymptotically equivalent to minimizing $E[G_n(\varphi)]$.

Note: Minimizing $E[G_n(\varphi)]$ can be performed by minimizing $CV_n(\varphi)$.

Note: Minimizing $G_n(\varphi)$ seems to be impossible if we do not know the true distribution.

Contents

1. Basic Bayesian procedures

2. Main Theorem

3. Proof <u>arXiv:1503.07970</u>

4. Example

Contents

1. Basic Bayesian procedures

2. Main Theorem

3. Proof

4. Example

An Example

```
Model p(x|s,m) = (s/2\pi)^{1/2} \exp(-(s/2)(x-m)^2)

True q(x) = p(x|1,1)

Prior \phi(s,m|\mu,\lambda) = s^{\mu} \exp(-\lambda s(m^2+1))
```

 $\varphi(\mu, \lambda)$ is a set of hyperparameters

Proper
$$\Leftrightarrow \mu > -1/2, \lambda > 0$$

Fixed Prior $\varphi_0(s,m) = 1$

 (w^*,s^*) : MAP = MLE

An Example

$$(A_n)^{k1, k2} (w^*) = \begin{bmatrix} 1/(2s^*) & 0 \\ 0 & s^{*2} \end{bmatrix}$$

$$(B_n)^{k1, k2} (w^*) = \begin{pmatrix} 1/(s^*) & -s^{*2}M_3/2 \\ -s^{*2}M_3/2 & (s^{*2} + s^{*4}M_4)/2 \end{pmatrix}$$

$$(C_n)^{k1}(w^*) = (0, s^* + s^{*3}M_3)$$

An Example

Mathematical relation between priors $\phi(s,m)$ and $\phi(s,m)$ results in

$$\begin{split} \mathsf{M}_{\mathsf{n}}\left(\phi,\mathsf{m}^{*},\mathsf{s}^{*}\right) &= (1/2)\;\lambda^{2}\mathsf{s}^{*}\mathsf{m}^{*2} + (-\lambda\mathsf{s}^{*}\mathsf{m}^{*2}/2 + \mu - \lambda\mathsf{s}^{*}/2)^{2} \\ &+ (-\lambda\mathsf{s}^{*}\mathsf{m}^{*2}/2 + \mu/2 - \lambda\mathsf{s}^{*}/2)(1 + \mathsf{s}^{*2}\mathsf{M}_{4}) \\ &- \lambda + \lambda\mathsf{m}^{*}\mathsf{s}^{*2}\mathsf{M}_{3} \end{split}$$

Simulation : λ is fixed and μ is optimized.

Information Criteria

Generalization loss	$G_n(\mu) = - E_x[log p(x X^n)]$
Importance sampling cross validation	$ISCV_n(\mu) = (1/n) \Sigma log E_w[1/p(X_i w)]$
Widely Applicable Information Criterion	WAIC _n (μ) = - (1/n) Σ log E _w [p(X _i w)] +(1/n) Σ V _w [log p(X _i w)]
Deviance Information Criterion (Spiegelhalter et.al.)	$DIC_{n}(\mu) = (1/n) \Sigma \log p(X_{i} E_{w}[w])$ $- (2/n) \Sigma \log E_{w}[p(X_{i} w)]$
Minus log marginal Likelihood	$F_n(\mu) = -\log \int \varphi(w) \prod p(X_i w)dw + \log \int \varphi(w) dw$
Higher order CV	WAICR _n (μ) = (1/n ²) M _n (φ ,w*)

Simulation Results

Experimental Discussion

```
Model p(x|s,m) = (s/2\pi)^{1/2} \exp(-(s/2)(x-m)^2)

True q(x) = p(x|1,1)

Prior \phi(s,m|\mu,\lambda) = s^{\mu} \exp(-\lambda s(m^2+1))
```

From the view point of hyperparameter optimization,

- (1) The variance of the random generalization loss is far larger than cross validation and information criteria.
- (2) $\phi(s,m|\mu,\lambda)$ is improper at the optimal μ that minimizes the average generalization loss. It can not be found by maximizing the marginal likelihood.

Conclusion

- 1. Higher order asymptotic theory of Bayesian cross validation is established.
- 2. Average generalization loss is minimized by minimizing the cross validation or WAIC.
- 3. Average generalization loss is not minimized by using the marginal likelihood or DIC.
- 4. Random generalization loss is not minimized by any criteria. It seems to be impossible.

Future Study

- 1. Understanding the results from the viewpoint of information geometry.
- 2. In singular models, choosing a prior often affects the first order statistics.