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Purpose of this Research
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Answer to the Bayesian question:

“Is choosing a prior by minimizing cross validation

really optimal for minimizing generalization loss ?”

S. Watanabe, Bayesian Cross Validation and WAIC for 

Predictive Prior Design in Regular Asymptotic Theory

http://arxiv.org/abs/1503.07970


Why Higher Order is Necessary

(1) In Bayesian statistics, it is frequently discussed

how to choose (or optimize) a prior. 

(2) In regular statistical models, the first order 

statistics does not depend on a prior. 

(3) Higher order analysis is necessary to study 

the effect of a prior. 



(1)  Evaluation measure : generalization loss

(= KL loss) of Bayes predictive distribution. 

Optimality Measure of a Prior  

(2)  Optimizing criteria : cross validation, 

information criteria, and marginal likelihood.  

In this presentation, we study the optimality of

a prior on the following situations.

(3)  Statistical model : regular 
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Notations: Model and Prior

(1) q(x) : an unknown true probability density on RN. 

(2) Xn=(X1,X2,…,Xn) : a set of random variables

which are independently subject to q(x). 

(3) p(x|w) : a probability density on RN for

a given parameter w in Rd.

(4) j0(w) :   a fixed prior on Rd (improper). 

Note: q(x) is not realizable by p(x|w) in general. 

j(w) :    a candidate prior on Rd (improper). 



Definition of Bayesian Estimation

(1) Posterior distribution is defined by

p(w|Xn) = (1/Z) j(w) P p(Xi|w), 
n

i=1

(2) Ew[  ] shows the expected value over p(w|Xn).  

where Z is a normalizing constant. 

p(x|Xn) = Ew[ p(x|w) ].

(3) Predictive distribution 

Note: Even if a prior is improper, we assume Z is finite. 

Vw[  ] shows the variance over p(w|Xn).  



Generalization and Cross Validation

Gn(j)  =   - q(x)  log p(x|Xn) dx.

(1) Random generalization loss 

(2) Average generalization loss 

(3) Cross validation loss (Leave-one-out) 

E[ Gn(j) ].

CVn(j)  =    - (1/n) S log p(Xi|X
n - Xi). 

n

i=1

(4) Average cross validation loss 

E[ CVn(j) ].



ISCV and WAIC

ISCVn(j)  =    (1/n) S log Ew[ 1/ p(Xi|w) ].
n

i=1

(1)  Importance sampling CV  ( Gel’fand et. al., 1992) 

It is proved that  CVn(j) = ISCVn(j). 

WAICn(j)  =   - (1/n) S log Ew[ p(Xi|w) ]
n

i=1

(2)  Widely Applicable Information Criterion (Watanabe, 2009) 

+ (1/n) S Vw[ log p(Xi|w) ].
n

i=1

In regular models,   CVn(j) = WAICn(j) + Op(1/n3).



Marginal likelihood

Fn(j) = - log     j(w) P p(Xi|w)dw + log    j(w) dw. 
n

i=1

For an improper prior j(w),  a priori probability distribution is

j(w) /     j(w) dw. 

The minus log marginal likelihood (I.J. Good)  is 

Note: If  ∫ j(w) dw=∞, the marginal likelihood can not be 

defined, whereas CV and WAIC can be defined. 

Note: If you employ the marginal likelihood as a criterion, a prior function

should be proper. However, the optimal prior function that minimizes the

generalization loss may be improper in general. 



Basic Question 

By the definition, for an arbitrary integer n>1,  

E[ Gn-1(j) ] = E[ Fn(j) ] - E[ Fn-1(j) ], 

Gn-1(j)  is not equal to CVn(j). 

However,

Basic Question: 

Assume j(w) = j(w|a), where a is a hyperparameter. 

Does a that minimizes CVn(j) or Fn(j) also 

minimizes Gn(j) and E[ Gn(j) ], asymptotically ?

E[ Gn-1(j) ] = E[ CVn(j) ].

Gn-1(j)  is not equal to Fn(j)  - Fn-1(j),  
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Notations I

(2)  Ln(w) =    - (1/n) S log p(Xi|w) – log j0(w) 
n

i=1

(3)  w* = argmin Ln (w) : MAP estimator for j0(w) 

(4)  L(w) =    - q(x) log p(x|w) dx

(5)  w0 = argmin L(w) 

Note: If j0(w) =1 is chosen as a fixed prior, then it is improper. 

Ln(w) is a minus likelihood function and w* is MLE.  

w* does not depend on a candidate prior. 

(1)  j0(w)  : A fixed prior (for example, j0(w) ≡1)  



Notations  II

(1) For a given function f(w),  

(2) Einstein’s summation convention 

Ak1k2B
k2k3 =  S Ak1k2B

k2k3.
d 

k2=1

(3) Assumption:    (L(w)) k1k2  is positive definite in

a neighborhood of  w0

(gn)
k1k2 (w) = Inverse matrix of (Ln(w)) k1k2

(g)k1k2 (w) = Inverse matrix of (L(w)) k1k2

Note: These functions do not depend on a candidate prior. 

fk1k2・・・km(w) = (  /  wk1) (  /  wk2) ・・・ (  /  wkm) f(w). 



Notations III

Correlations 

(Fn)k1, k2
(w) = (1/n) S (log p(Xi|w))k1 (log p(Xi|w))k2

n 

i=1

(Fn)k1k2, k3
(w) = (1/n) S (log p(Xi|w))k1k2 (log p(Xi|w))k3

n 

i=1

(F)k1, k2
(w) = E[ (Fn)k1, k2

(w) ] 

(F)k1k2, k3
(w) = E[ (Fn)k1k2, k3

(w) ] 

Average correlations

Note: These functions do not depend on a candidate prior. 



Notations IV

(An) 
k1 k2 (w) = (1/2) (gn)

k1k2(w) 

(Bn) 
k1k2 (w) = (1/2) { (gn)

k1k2(w) + (gn)
k1k3(w) (gn)

k2k4(w) (Fn)k3, k4
(w)  }

(Cn) 
k1 (w) = (gn)

k1k2(w) (gn)
k3k4(w) (Fn) k2k4,k3

(w)

-(1/2) (gn)
k1k2(w) (gn)

k3k4(w) (Ln)k2k3k4
(w)

-(1/2) (gn)
k1k2(w) (gn)

k3k4(w)(gn)
k5k6(w)(Ln)k2k3k5

(w)(Fn)k4,k6
(w)

(A) k1 k2(w), (B) k1 k2(w), and  (C)k1(w) are defined by the 

same equations as (An)
k1 k2 (w), (Bn)

k1 k2 (w), and (Cn)
k1 (w)

by using (g)k1k2(w), (F)k1, k2
(w), and  (F)k1k2, k3

(w) 

in stead of (gn)
k1k2(w), (Fn)k1, k2

(w), and (Fn)k1k2, k3
(w).

Definitions of (A) k1 k2(w), (B) k1 k2(w), and  (C)k1(w)

For higher order analysis, the following functions are necessary. 

Note: These functions do not depend on a candidate prior. 



Notations V

Mathematical relations between priors j(w) and j0(w). 

Mn(j,w) = (An)
k1k2(w) (log Φ)k1(log Φ)k2

+ (Bn)
k1k2(w) (log Φ) k1k2 + (Cn)

k1(w) (log Φ)k1

Φ(w) = j(w)/j0(w).   Ratio of candidate and fixed priors. 

M(j,w) = (A)k1k2(w) (log Φ)k1(log Φ)k2

+ (B)k1k2(w) (log Φ) k1k2 + (C)k1(w) (log Φ)k1

Note:  Neither (A) k1, k2(w), (B) k1, k2(w),  (C)k1(w), (An)
k1, k2 (w),(Bn)

k1, 

k2 (w), nor (Cn)
k1 (w) depends on the candidate prior j(w).

A candidate prior affects only (log Φ).

For higher order analysis, the followings are necessary. 



Theorem

Mn (j,w*) = M(j, w0) + Op(1/n1/2),   

w* = MAP estimator for j0(w) 

(1) Mathematical relations asymptotically satisfy 

E[ Mn (j,w*) ] = M(j, w0) + O(1/n).   

Note: Minimizing Mn (j,w*) is asymptotically equivalent  

to minimizing E[ Mn (j,w*) ] and M(j, w0).  



Theorem

CV(j) = CV(j0) + (1/n2) Mn(j,w*) +Op(1/n3)   

E[CV(j)] = E[CV(j0)] + (1/n2) M(j,w0) +O(1/n3)   

(2) Cross validation asymptotically satisfies 

Note: Minimizing CV(j) is asymptotically equivalent to 

minimizing Mn(j,w*). 

Note: Minimizing CV(j) is asymptotically equivalent to 

minimizing E[CV(j)] . 



Theorem

Gn(j) = Gn (j0) +Op(1/n3/2)   

E[ Gn (j) ] = E[ Gn (j0) ] + (1/n2) M(j,w0) +O(1/n3)   

(3) Generalization loss asymptotically satisfies

Note:  Minimizing CVn (j) is not asymptotically equivalent to 

minimizing Gn (j)．

Note:  Minimizing CVn (j) is asymptotically equivalent to 

minimizing E[ Gn (j) ] . 

Note: Minimizing Gn (j) seems to be impossible if we do not know the 

true distribution.  

Note: Minimizing E[ Gn (j) ] can be performed by minimizing CVn (j). 
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An Example

Model   p(x|s,m) = (s/2p)1/2 exp(- (s/2)(x-m) 2 ) 

Prior   j(s,m|m, l) = sm exp( - l s(m2 +1) ) 

True   q(x) = p(x|1,1)

Proper ⇔ m > -1/2,  l>0

Fixed Prior   j0(s,m) =1

(w*,s*) : MAP = MLE

j(m, l) is a set of hyperparameters 



An Example

(An) 
k1, k2 (w*) = 

(Bn) 
k1, k2 (w*) = 

(Cn) 
k1 (w*) = (0, s* +s*3M3) 

1/(2s*)   0

0        s*2

1/(s*)              -s*2M3/2

-s*2M3/2        (s*2 +s*4M4)/2 



An Example

Mn (j,m*,s*) = (1/2) l2s*m*2 + (-ls*m*2/2 + m - ls*/2)2

+ (-ls*m*2/2+m/2-ls*/2)(1+s*2M4)

- l + lm*s*2M3

Simulation :  l is fixed and m is optimized. 

Mathematical relation between priors j(s,m) and j0(s,m) 

results in



Information Criteria

ISCVn (m)  =  (1/n) S log Ew[ 1/ p(Xi|w) ]

WAICn (m) =  - (1/n) S log Ew[ p(Xi|w) ]

+(1/n) S Vw[ log p(Xi|w) ]

WAICRn (m) = (1/n2) Mn(j,w*) 

Fn (m) = - log     j(w) P p(Xi|w)dw

+ log    j(w) dw 

DICn (m)  =   (1/n) S log p(Xi| Ew[w] ) 

- (2/n) S log Ew[ p(Xi|w) ]

Gn (m)  =   - Ex[  log p(x|Xn) ] Generalization loss

Importance sampling 

cross validation

Widely Applicable

Information Criterion

Deviance Information 

Criterion 

(Spiegelhalter et.al.)

Minus log marginal

Likelihood 

Higher order CV 



Simulation Results

ISCV(m)-ISCV(0) WAIC(m)-WAIC(0)

WAICR(m)
F(m)-F(0)

DIC(m)-DIC(0)

G(m)-G(0)

Improper



Experimental Discussion

Model   p(x|s,m) = (s/2p)1/2 exp(- (s/2)(x-m) 2 ) 

Prior   j(s,m|m, l) = sm exp( - l s(m2 +1) ) 

True   q(x) = p(x|1,1)

(1) The variance of the random generalization loss is far

larger than cross validation and information criteria. 

(2) j(s,m|m, l) is improper at the optimal m that 

minimizes the average generalization loss. It can not be

found by maximizing the marginal likelihood.

From the view point of hyperparameter optimization, 



Conclusion

1.  Higher order asymptotic theory of Bayesian

cross validation is established. 

2.  Average generalization loss is minimized by   

minimizing the cross validation or WAIC. 

4.  Random generalization loss is not minimized by 

any criteria. It seems to be impossible. 

3.  Average generalization loss is not minimized by 

using the marginal likelihood or DIC. 



Future Study

1.  Understanding the results from the viewpoint of

information geometry. 

2.  In singular models, choosing a prior often affects

the first order statistics.  


